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Abstract

Protein fold recognition has been the focus of computa-
tional biologists for many years. In order to map a pro-
tein primary structure to its correct 3D fold, we introduce
in this paper a machine learning paradigm that we entitled
“structural hidden Markov model” (SHMM). We show how
the concept of SHMM can efficiently use the protein sec-
ondary structure during the fold recognition task. Experi-
mental results showed that the SHMM outperforms the SVM
with a 6% improvement in the average accuracy. However,
because in this application the two classifiers are not corre-
lated, therefore their combination based on the highest rank
criterion boosted the SHMM average accuracy with 10%.

1. Introduction

The primary structure of a protein is its linear sequence
of amino acids and the location of any disulfide bridges.
Each secondary structure is a stretch of a sequence of amino
acids that takes on a characteristic structure in the three-
dimensional space. Each protein can be considered as a ter-
tiary structure - a sequence of secondary structures folded
in a certain way in the three-dimensional space. This fold-
ing process of a protein is a global overview of the pro-
tein’s energy surface [13]. It is a thermodynamically driven
process. Proteins fold by reaching their thermodynamically
most stable structure. However, many local and non-local
interactions take part in the process, and therefore the search
space of possible structures becomes enormous. The fold-
ing occurs through organizing an ensemble of structures
rather than through only a few uniquely defined structural
intermediates. As the protein databank grows larger, the
proteins classification process and its folding prediction be-
comes slower and more difficult.

Computational analysis of biological data obtained in
genome sequencing is essential for the understanding of cel-
lular functions and the discovery of new drugs and thera-

pies. Sequence-sequence and sequence-structure compari-
son play a critical role in predicting a possible function for
new sequences. Sequence alignment is accurate in detect-
ing relationships between proteins. However, this method is
not efficient when two proteins are structurally similar, but
have no significant sequence similarity. Protein fold recog-
nition is an important approach to structure discovery that
does not rely on sequence similarity. It consists of assign-
ing an amino acid sequence of unknown structure to one of
a library of target 3D structures. Understanding the protein
three-dimensional structure is one of the many things we
need to achieve if we were to decode the human genome or
the genome of a given pathogen.

Researchers have been devising new methods to solve
this problem and a lot of valuable work has been under-
taken. Lawrence Hunter applied heuristic Bayesian classi-
fication to define and enumerate structural motifs present in
protein macromolecular systems [8]. White et al. applied a
nonlinear optimal filtering algorithm to predict a protein’s
tertiary structure [10]. Dubchak and his colleagues pro-
posed a method for predicting protein folding class based on
a global protein chain description and a voting process [6].
Maeda et al. proposed a classification method of protein
folds using a structural transformation of one protein to
another [12]. Ding et al. worked on multi-class protein
fold recognition using support vector machines (SVMs) and
neural networks (NNs) [5]. The SVMs approach used by
Ding et al. will be compared to ours in this paper. Ja-
son et al. built a protein classification system which de-
pends significantly on the choice of a “good” representa-
tion of the input sequences of amino acids [14]. Though
their work achieved the state-of-the-art classification per-
formance, their methodology does not handle unknown and
unlabeled data.

From all the previous work, it is worth to underscore
that the interaction between secondary structures has not
been fully exploited in the literature. The goal in this pa-
per is to discover the protein fold by considering both the
amino acid sequence (sequential information) and the 3D



folding of the secondary structures (structural information).
The fusion of sequential and structural information is the
basis of the methodology we are proposing. This fusion is
accomplished through the structural hidden Markov model
(SHMM) [2, 4, 3]. The core of SHMM is based on the no-
tion of local structure. The whole pattern is a sequence of
structures. A local structure may have different represen-
tations. It can be captured by production rules, classes of
equivalence, or any other clustering scheme.

2. Structural HMM

The concept of SHMM emphasizes the relations between
parts (eg. secondary structures of a protein) of an entity and
the whole [3, 4].Our idea is that a complex patternO =
o1, o2, . . . oT can be viewed as a sequence of constituents
Oi made of strings of symbolsoi ∈ Σ interrelated in some
way. EachOi is assigned to a local structureCj . A SHMM
is then defined as follows.

Definition 2.1 A structural hidden Markov model is a quin-
tuple λ = [π,A,B, C,D], where: π is the initial hidden
state probability vector,A is the hidden state transition
probability matrix,B is the hidden state conditional prob-
ability matrix of the visible observations,C is the posterior
probability matrix of a structure given a sequence of obser-
vations, andD is the structure transition probability matrix.

An SHMM is characterized by the following elements:
• N, the number of hidden states in the model. We label

the individual states as 1, 2, . . . , N, and denote the state
at timet asqt.

• M , the number of distinct observationsoi

• π, the initial hidden state distribution, whereπi =
P (q1 = i) and1 ≤ i ≤ N ,

∑
i πi = 1.

• A, the hidden state transition probability distribution
matrix,A = {aij}, whereaij = P (qt+1 = j | qt = i)
and1 ≤ i, j ≤ N ,

∑
j aij = 1.

• B, the hidden state conditional probability matrix of
the observations,B = {bj(k)}, in which bj(k) =
P (ok | qj), 1 ≤ k ≤ M and 1 ≤ j ≤ N ,∑

k bj(k) = 1.
• F, the number of distinct local structures.
• C is the posterior probability matrix of a structure given

its corresponding observation sequence,
C = P (Cj | Oi) = ci(j). For each particular input
stringOi, we have:

∑
j ci(j) = 1.

• D, the structure transition probability matrix.
D = {dij}, wheredij = P (Ct+1 = j | Ct = i),∑

j dij = 1, 1 ≤ i, j ≤ F .

Unlike the traditional HMM, the SHMM has two addi-
tional matrices that convey structural information. Figure 1
depicts a graphical representation of a structural hidden
Markov model.

Figure 1. A graphical representation of a
structural hidden Markov model.

The evaluation problem in SHMM consists of evaluating
the probability for the modelλ = [π,A,B, C,D] to produce
the sequenceO. This probability can be expressed as:

P (O | λ) =
∑

C

P (O, C | λ) =
∑

C

Φ×
∑

q

Ψ, (1)

whereΦ =
s∏

i=1

ci(i)× di−1,i

P (Ci)
,

and Ψ = πq1bq1(o1)aq1q2bq2(o2) . . . aq(T−1)qT
bqT

(oT ).
The structural decoding problem consists of determining
the optimal structure sequenceC∗ =< C∗1 , C∗2 , . . . , C∗t >
such that:C∗ = arg max

C
P (O, C | λ).

In Figure 2, the amino acid sequence of protein 2DKB
is O, the local structuresCj were determined through an
equivalence relation defined on the set of subsequencesOi.
The secondary structures of a protein are the local structures
Ci assigned toOi.

3. Experiment

In this section, we discuss data collection, the training
and testing phases. We also report the results obtained.

3.1. Data Collection

The dataset that we used during the experiment was ob-
tained from the SCOP (Structural Classification of Proteins)
database. It is the PDB-40D set developed by the authors
of SCOP database [11]. This data set has also been used by
Ding and his colleagues [5]. As outlined in the introduction,
one of our goals is to compare the approach taken by Ding’s
team with ours. The features they used were based on sta-
tistical information on amino acids such as “composition”,
“transition”, and “distribution”. Details on these features
can be found at:“http://www.nersc.gov/∼cding/protein”.
In Ding’s experiment using SVMs, the feature extraction
phase did not take into accountthe orderof the secondary



Figure 2. The 3D structure of a protein (fold)
is captured by its secondary structure se-
quence Cj .

structures found in the whole sequence. However, in our
approach it is the sequence of secondary structures that cap-
tures the whole 3D fold.Thus, SHMM is capable to model
genomic and protenomic data in a more consistent way.

3.2. Training and Testing

Since there are 27 protein classes in the data set, there-
fore, we have built 27 SHMM training modelsλi. For this
protein application, there are 4 types of secondary struc-
tures: “Helix”, “Sheet”, “Turn”, and “Extended”. Thus,
we have fixed the number of local structures to “4” in
each model. This data set contains 990 amino acid se-
quences. In order to measure the power of generalization of
the SHMM’s classifier, we used them-fold cross-validation
estimation technique. We divided the 990 sequences into
5 sets, each of which contains 198 sequences. Then we
selected one set for testing and the other 4 sets for train-
ing. We repeated this procedure 5 times with each time se-
lecting a different set for testing. During testing, the op-
timal model λ∗ amongst the 27 is the one that best fits
the time series sequence of amino acids. It is defined as:
λ∗ = arg maxλi P (O | λi). The global accuracy of the
SHMM is the mean of those obtained in the 5 test sets. Each
amino acid sequence has been tested on all 27 SHMM mod-

els. The one who generates the highest score is the class
assigned to that protein sequence.

3.3. Results and Discussion

The results depicted by Table 1, shows that for some
protein classes, SHMM performed better than SVM. How-
ever, for some other protein classes, SHMM has been out-
performed by SVM. When we picked some protein sam-
ples from the data set and examined their amino acid
sequences, we found out that for those protein classes
on which SHMM performed better, theirOi sequence
tend to have long subsequences of the same secondary
structure. For example, SHMM performed successfully
on a protein with a secondary structure sequence like
C1C1C1C1C1C1...C2C2C2C2..., and less successfully on
secondary structure sequence likeC1C2C1C2C2C3C2....
This erratic behavior will be investigated in our future work.

In order to exploit the strengths of SHMM and SVM si-
multaneously, we combined the results of both classifiers.
There has been an extensive amount of research that prove
that in most practical cases, a combination of classifiers per-
forms better than a single classifier [1, 7, 15, 9].A multi-
classifier system is a powerful solution to difficult pattern
recognition problems involving large class sets and noisy
input. We have adopted “the highest rank strategy” to de-
termine the final classification results. We assumed both
SHMM and SVM have the same weight in decision mak-
ing. The highest score assigned to an amino acid sequence
using SHMM is compared to the highest score using SVM.
Then, the maximum score is selected as the classification
result. Table 1 shows the results of both classifications and
the combined result. The relative improvements of the com-
bined classifier over SVM and SHMM are shown in Table 2.

4. Conclusion and Future Work

In this paper, we have proposed the Structural HMM
model as a novel machine learning paradigm that fits seam-
lessly the protein fold recognition application. We have ap-
plied the concept of SHMM in order to exploit the relations
between the secondary structures of a protein. This infor-
mation is vital for the recognition of a protein 3D fold. We
combined the classification results of SHMM with those of
SVM in order to build a multiclassifier system. Although,
the SHMM produced better results than the SVM in the av-
erage, the combined classification has outperformed both
models when used separately.

It is worth to outline that the incorporation of topological
features within the actual SHMM will strengthen the model
significantly. This objective will be part of our future work.



Fold Class SVM SHMM Combined SHMM-SVM
1 87.5 83.3 87.5 -4.2
3 50.9 77.8 88.9 26.9
4 43.7 35.0 50.0 -10.4
7 53.5 100.0 100.0 46.5
9 69.8 50.0 77.8 -19.8
11 50.0 66.7 66.7 16.7
20 48.6 56.6 59.1 8.0
23 15.3 33.3 33.3 18.0
26 46.8 34.7 61.5 -12.1
30 25.0 33.3 33.3 8.3
31 41.9 50.0 75.0 8.1
32 27.4 26.0 42.1 -1.4
33 50.0 75.5 50.0 25.5
35 25.0 25.0 50.0 0.0
39 39.3 50.0 71.4 10.7
46 60.5 50.0 60.4 9.5
47 56.9 58.3 66.7 1.4
48 29.5 34.7 38.4 5.2
51 31.2 30.0 48.1 -1.2
54 47.2 60.0 60.0 12.8
57 25.0 75.0 50.0 50
59 39.3 35.7 35.7 -3.6
62 78.6 85.7 85.7 7.1
69 25.0 50.0 100.0 25.0
72 25.0 50.0 75.0 25.0
87 24.5 33.3 44.4 7.8
110 69.3 33.3 51.8 -36.0

Average 45.2 51.6 61.6 6.4

Table 1. Prediction accuracy using SVM,
SHMM, and the combination of both.

Model Improvement in %
Combination−SV M

SV M 36.3
Combination−SHMM

SHMM 19.4

Table 2. The relative improvement of the com-
bination of SVM with SHMM over SVM and
SHMM alone.
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