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ABSTRACT

Protein fold recognition has been the focus of computational biclogists for many years. In order to map a protein
primary structure to its correct 3D fold, we introduce in this paper a machine learning paradigm that we entitled
"structural hidden Markov model” (SHMM). We show how the concept of SHMM can efficiently use the protein
secondary structure during the fold recognition task. Experimental results showed that the SHMM outperforms the
SWM with a 6% improvement in the average accuracy. However, because in this application the two classifiers are
not correlated, therefore their combination based on the highest rank criterion boosted the SHMM average

accuracy with 10%
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Abstract pies. Sequence-sequence and sequence-structure compari-
son play a critical role in predicting a possible function for
Protein fold recognition has been the focus of computa- new sequences. Sequence alignment is accurate in detect-
tional biologists for many years. In order to map a pro- ing relationships between proteins. However, this method is
tein primary structure to its correct 3D fold, we introduce not efficient when two proteins are structurally similar, but
in this paper a machine learning paradigm that we entitled have no significant sequence similarity. Protein fold recog-
“structural hidden Markov model” (SHMM). We show how nition is an important approach to structure discovery that
the concept of SHMM can efficiently use the protein sec-does not rely on sequence similarity. It consists of assign-
ondary structure during the fold recognition task. Experi- ing an amino acid sequence of unknown structure to one of
mental results showed that the SHMM outperforms the SVMa library of target 3D structures. Understanding the protein
with a 6% improvement in the average accuracy. However, three-dimensional structure is one of the many things we
because in this application the two classifiers are not corre- need to achieve if we were to decode the human genome or
lated, therefore their combination based on the highest rank the genome of a given pathogen.
criterion boosted the SHMM average accuracy with 10%. Researchers have been devising new methods to solve
this problem and a lot of valuable work has been under-
taken. Lawrence Hunter applied heuristic Bayesian classi-
1. Introduction fication to define and enumerate structural motifs present in
protein macromolecular systems [8]. White et al. applied a
The primary structure of a protein is its linear sequence honlinear optimal filtering algorithm to predict a protein's
of amino acids and the location of any disulfide bridges. tertiary structure [10]. Dubchak and his colleagues pro-
Each secondary structure is a stretch of a sequence of amingosed a method for predicting protein folding class based on
acids that takes on a characteristic structure in the three-2 global protein chain description and a voting process [6].
dimensional space. Each protein can be considered as a teMaeda et al. proposed a classification method of protein
tiary structure - a sequence of secondary structures foldedolds using a structural transformation of one protein to
in a certain way in the three-dimensional space. This fold- another [12]. Ding et al. worked on multi-class protein
ing process of a protein is a global overview of the pro- fold recognition using support vector machines (SVMs) and
tein's energy surface [13]. It is a thermodynamically driven neural networks (NNs) [5]. The SVMs approach used by
process. Proteins fold by reaching their thermodynamically Ding et al. will be compared to ours in this paper. Ja-
most stable structure. However, many local and non-localSon et al. built a protein classification system which de-
interactions take partin the process, and therefore the searcRends significantly on the choice of a “good” representa-
space of possible structures becomes enormous. The foldtion of the input sequences of amino acids [14]. Though
ing occurs through organizing an ensemble of structurestheir work achieved the state-of-the-art classification per-
rather than through only a few uniquely defined structural formance, their methodology does not handle unknown and
intermediates. As the protein databank grows larger, theunlabeled data.
proteins classification process and its folding prediction be-  From all the previous work, it is worth to underscore
comes slower and more difficult. that the interaction between secondary structures has not
Computational analysis of biological data obtained in been fully exploited in the literatureThe goal in this pa-
genome sequencing is essential for the understanding of celper is to discover the protein fold by considering both the
lular functions and the discovery of new drugs and thera- amino acid sequence (sequential information) and the 3D



folding of the secondary structures (structural information).
The fusion of sequential and structural information is the
basis of the methodology we are proposifidis fusion is
accomplished through the structural hidden Markov model
(SHMM) [2, 4, 3]. The core of SHMM is based on the no-

tion of local structure The whole pattern is a sequence of 6. N
structures. A local structure may have different represen- @ a @ @ @ @ w
tations. It can be captured by production rules, classes of ‘ ‘
equivalence, or any other clustering scheme. @ @ """ @ @

2. Structural HMM Figure 1. A graphical representation of a
structural hidden Markov model.

The concept of SHMM emphasizes the relations between
parts (eg. secondary structures of a protein) of an entity and
the whole [3, 4].Our idea is that a complex pattel® =
01,02, ...07 can be viewed as a sequence of constituents
O, made of strings of symbols € ¥ interrelated in some
way. EachO; is assigned to a local structutg. A SHMM
is then defined as follows.

The evaluation problem in SHMM consists of evaluating
the probability for the mode\ = [r, A, B,C, D] to produce
the sequenc®. This probability can be expressed as:

PO =Y PO,CIN=) x> T (1)
Definition 2.1 A structural hidden Markov model is a quin- c c q
tuple A = [r, A, B,C, D], where: « is the initial hidden
state probability vector,4 is the hidden state transition
probability matrix, 5 is the hidden state conditional prob-
ability matrix of the visible observation§,is the posterior
probability matrix of a structure given a sequence of obser-
vations, andD is the structure transition probability matrix.

5 Cl(l) X difli
whered = | | ———-+——=,

2]'1 P(C;)
and U = 7T(hbth (01)a01Q2bQQ (02) . "aqu—l)QTb‘ZT (OT)" .
The structural decoding problem consists of determining
the optimal structure sequenc€ =< Cy,C5,...,C; >

such thatC* = argmax P(O,C | A).
. . . C
An SHMM is characterized by the following elements: In Figure 2, the amino acid sequence of protein 2DKB
e N, the number of hidden states in the model. We label ;¢ 0, the local structures’; were determined through an

the individual states as 1, 2, ..., N, and denote the state,
at timet asgq;.
e M, the number of distinct observations
e 7, the initial hidden state distribution, wherg =
P(gp=i)andl <i < N,> . m = 1. .
e A, the hidden state transition probability distribution 3. EXperiment
matrix, A = {a;; }, wherea;; = P(¢141 =7 | ¢t = %)
andl <i,j <N, > .a;; = 1. In this section, we discuss data collection, the training
e B3, the hidden state conditional probability matrix of and testing phases. We also report the results obtained.
the observations3 = {b;(k)}, in which b;(k) =
Pl | ¢),1 <k < Mandl < j < N, 3.1. Data Collection

quivalence relation defined on the set of subsequengces
The secondary structures of a protein are the local structures
C; assigned t@);.

Spbik)=1.
e F, the number of distinct local structures. _ The dataset that we used during the experiment was ob-
e Cisthe posterior probability matrix of a structure given  5ineq from the SCOP (Structural Classification of Proteins)
its corresponding observation sequence, database. It is the PDB-40D set developed by the authors

C = P(C; | 0i) = ci(j). For each particular input ¢ 5cop database [11]. This data set has also been used by
stringO;, we have:_; ¢i(j) = 1. _ Ding and his colleagues [5]. As outlined in the introduction,
* D, the structure transition probability matrlx. ) one of our goals is to compare the approach taken by Ding’s
;Zd{cﬁji i’vzire_dg F: P(Crnr = | G = 1), team with ours. The features they used were based on sta-
g = S h) = tistical information on amino acids such as “composition”,

Unlike the traditional HMM, the SHMM has two addi- “transition”, and “distribution”. Details on these features
tional matrices that convey structural information. Figure 1 can be found at:“http://www.nersc.gov.cding/protein”.
depicts a graphical representation of a structural hiddenin Ding’s experiment using SVMs, the feature extraction
Markov model. phase did not take into accoutie orderof the secondary
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0,' The amino acids sequence of 2DKB (2-Dialkylglycine Decarboxylase):

Figure 2. The 3D structure of a protein (fold)
is captured by its secondary structure se-
quence Cj.

structures found in the whole sequence. However, in our

els. The one who generates the highest score is the class
assigned to that protein sequence.

3.3. Results and Discussion

The results depicted by Table 1, shows that for some
protein classes, SHMM performed better than SVM. How-
ever, for some other protein classes, SHMM has been out-
performed by SVM. When we picked some protein sam-
ples from the data set and examined their amino acid
sequences, we found out that for those protein classes
on which SHMM performed better, thei®; sequence
tend to have long subsequences of the same secondary
structure. For example, SHMM performed successfully
on a protein with a secondary structure sequence like
C1C1C1C1C1C...C3C5C5C5..., and less successfully on
secondary structure sequence likeCoCCyCoC3C5....

This erratic behavior will be investigated in our future work.
In order to exploit the strengths of SHMM and SVM si-
multaneously, we combined the results of both classifiers.
There has been an extensive amount of research that prove
that in most practical cases, a combination of classifiers per-

forms better than a single classifier [1, 7, 15, 8].multi-
classifier system is a powerful solution to difficult pattern
recognition problems involving large class sets and noisy
input We have adopted “the highest rank strategy” to de-
termine the final classification results. We assumed both
SHMM and SVM have the same weight in decision mak-

approach it is the sequence of secondary structures that caglg- The highest score assigned to an amino acid sequence

tures the whole 3D foldThus, SHMM is capable to model
genomic and protenomic data in a more consistent way.

3.2. Training and Testing

using SHMM is compared to the highest score using SVM.
Then, the maximum score is selected as the classification
result. Table 1 shows the results of both classifications and
the combined result. The relative improvements of the com-
bined classifier over SVM and SHMM are shown in Table 2.

Since there are 27 protein classes in the data set, there-

fore, we have built 27 SHMM training models. For this
protein application, there are 4 types of secondary struc-
tures: “Helix”, “Sheet”, “Turn”, and “Extended”. Thus,
we have fixed the number of local structures to “4” in
each model.

4. Conclusion and Future Work

In this paper, we have proposed the Structural HMM

This data set contains 990 amino acid se-model as a novel machine learning paradigm that fits seam-

quences. In order to measure the power of generalization oflessly the protein fold recognition application. We have ap-

the SHMM'’s classifier, we used tme-fold cross-validation

plied the concept of SHMM in order to exploit the relations

estimation technique. We divided the 990 sequences intobetween the secondary structures of a protein. This infor-
5 sets, each of which contains 198 sequences. Then wenation is vital for the recognition of a protein 3D fold. We
selected one set for testing and the other 4 sets for train-combined the classification results of SHMM with those of
ing. We repeated this procedure 5 times with each time se-SVM in order to build a multiclassifier system. Although,

lecting a different set for testing. During testing, the op-
timal model \* amongst the 27 is the one that best fits
the time series sequence of amino acids. It is defined as
A* = argmaxy, P(O | A;). The global accuracy of the

the SHMM produced better results than the SVM in the av-
erage, the combined classification has outperformed both
models when used separately.

Itis worth to outline that the incorporation of topological

SHMM is the mean of those obtained in the 5 test sets. Eachfeatures within the actual SHMM will strengthen the model
amino acid sequence has been tested on all 27 SHMM modsignificantly. This objective will be part of our future work.



FoldClass | SVM SHMM | Combined| SHMM-SVM
1 87.5 83.3 87.5 -4.2
3 50.9 77.8 88.9 26.9
4 43.7 35.0 50.0 -10.4
7 53.5 100.0 100.0 46.5
9 69.8 50.0 77.8 -19.8
11 50.0 66.7 66.7 16.7
20 48.6 56.6 59.1 8.0
23 15.3 33.3 33.3 18.0
26 46.8 34.7 61.5 -12.1
30 25.0 33.3 33.3 8.3
31 41.9 50.0 75.0 8.1
32 27.4 26.0 42.1 -14
33 50.0 75.5 50.0 255
35 25.0 25.0 50.0 0.0
39 39.3 50.0 71.4 10.7
46 60.5 50.0 60.4 9.5
47 56.9 58.3 66.7 14
48 29.5 34.7 38.4 5.2
51 31.2 30.0 48.1 -1.2
54 47.2 60.0 60.0 12.8
57 25.0 75.0 50.0 50
59 39.3 35.7 35.7 -3.6
62 78.6 85.7 85.7 7.1
69 25.0 50.0 100.0 25.0
72 25.0 50.0 75.0 25.0
87 245 33.3 44.4 7.8
110 69.3 33.3 51.8 -36.0

Average 45.2 51.6 61.6 6.4

Table 1. Prediction accuracy using SVM,
SHMM, and the combination of both.

Model Improvement in %
Combination—SV M
SULT 36.3
Combination—SHM M
SHMM 194

Table 2. The relative improvement of the com-
bination of SVM with SHMM over SVM and
SHMM alone.
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