
 



Introduction to the Concept of Structural HMM:
Application to Mining Customers’ Preferences in Automotive Design

Abstract

We have introduced in this paper the concept of struc-
tural hidden Markov models (SHMM’s). This new paradigm
adds the syntactical (or structural) component to the tradi-
tional HMM’s. SHMM’s introduce relationships between
the visible observations of a sequence. These observations
are related because they are viewed as evidences of a same
conclusion in a rule of inference. We have applied this novel
concept to predict customer’s preferences for automotive
designs. SHMM has outperformed both the k-nearest neigh-
bors and the neural network classifiers with an additional
12% increase in accuracy.

1. Introduction

Almost all system modeling techniques include two sim-
ple relationships: theclassificationrelationship and the
componentialrelationship. The classification relationship is
the means by which the human mind generalizes experience
so that the class stars is filled with all those shiny dots that
we see in the sky of a summer night. The componential rela-
tionship is the means by which we organize the whole made
up of many parts that seems to be an inherent quality of all
patterns, from stars to automobiles to people to sand. There-
fore, statistics and structure are always driving humans in a
decision problem in pattern recognition (PR) [1]. Ideally,
researchers would have liked a solution to a PR problem
consists of the following stages: (i) find a feature vector
x, (ii) train a system using a set of training patterns whose
classification isa-priori known, and (iii) classify unknown
incoming patterns. Unfortunately, for most practical prob-
lems, this approach is not feasible because the precise fea-
ture vector is not obvious and thus training becomes impos-
sible. Therefore, the analytical approaches which process
the patterns only on a quantitative basis but ignore the inter-
relationships between the components of the patterns quite
often fail. The truth is that a pattern contains some rela-
tional and structural information from which it is difficult
and sometimes impossible to derive an appropriate feature

vector. Syntactical pattern recognition [3], Bayesian be-
lief networks [7], and Hidden Markov models (HMM’s) [8]
are some of the techniques that can handle statistical and
structural data butseparately. However, there is a grow-
ing need for developing mathematical paradigms that em-
bed both statistics and syntax at the same time. The main
goal in this paper is to merge statistics and syntax in a seam-
less way within a novel concept that we called “structural
hidden Markov models”. This paper is organized as fol-
lows: section 2 covers the mathematical description of a
structural hidden Markov model. The application and the
experiments are presented in section 3 and the conclusion
and future work are laid in section 4.

2. Fusion of Statistics and Syntax: The Con-
cept of Structural HMM

In this section, we build a mathematical model that
merges statistical and structural information together. This
model that we called SHMM goes beyond the traditional
HMM since it emphasizes the structure (or syntax) of the
visible sequence of observation. It provides information
about the structure formed by the visible sequence of
observations. LetO = (v1v2 . . . vT ) be the observation
sequence of lengthT and q = (q1q2 . . . qT ) be the state
sequence whereq1 is the initial state, given modelλ, we
can write:

P (O | λ) =
X

all q

P (O, q | λ) =
X

all q

[P (O | q, λ)× P (q | λ)] ,

and using state conditional independence, we obtain:

P (O | q, λ) =
TY

t=1

P (vt | qt, λ).

However, there are several scenarios where the condi-
tional independence assumption doesn’t hold. For example,
while standard HMM’s perform well in recognizing amino
acids and consequent construction of proteins from the first
level structure of DNA sequences [5], they are inadequate
for predicting the secondary structure of a protein. The rea-
son for the inadequacy comes from the fact that the same or-
der of amino acid sequences have different folding modes in
natural circumstances. Therefore, there is a need to balance
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the loss incurred by this state conditional independence as-
sumption. Our idea is to create syntactical rules that possess
these observation sequences as evidences. These rules show
how the secondary structure of a protein is constructed: they
represent the structural information.

In the SHMM framework, the observation sequenceO
is not only one sequence in which all observations are con-
ditionally independent, but a sequence that is divided into
a series of subsequencesOi = (v1v2 . . . vri

) (1 6 i 6 s),
where s is the number of subsequences. The observa-
tions in a subsequence are related in the sense that they
represent evidences for a same conclusion of a rule such

as CRi

Ri⇐= v1 ∧ v2 ∧ . . . ∧ vri
. The length of

each subsequence isri (1 6 i 6 s) andT =
sX

i=1

ri. The

structural information in this model is expressed through
the activation of the rules set by the experts. The whole
sequence of observations can be written directly as:

O = (v1v2 · · · vr1 , CR1 , vr1+1vr1+2 · · · vr1+r2 , CR2 ,

· · · , vr1+r2···rs , CRs ) = (O1CR1 , O2CR2 , · · · , OsCRs ).

Therefore, we can define a Structural HMM as:

Definition 2.1 A structural hidden Markov model is a quin-
tupleλ = (π,A,B, C,D), where:

• π is the initial state probability vector,π = {πi},
whereπi = P (q1 = i) and1 6 i 6 N ,

∑

i

πi = 1.

N is the number of states in the model. We label the
individual states as 1, 2, . . . , N, and denote the state at
timet asqt.

• A is the state transition probability matrix,
A = {aij}, whereaij = P (qt+1 = j | qt = i) and

1 6 i, j 6 N ,
∑

j

aij = 1.

• B is the state conditional probability matrix of the vis-
ible observations,
B = {bj(k)}, in whichbj(k) = P (vk | qj),
1 6 k 6 M and 1 6 j 6 N . M is the number of
distinct observations in one state. We use a symbol to
represent each observation, and the set of symbols is
denoted asV = {v1, v2, . . . , vM}.

• C is the posterior probability matrix of a conclusion
given a sequence of observations,C = {cj(i)}, where

cj(i) = P (CRi | Oj),
∑

i

cj(i) = 1. We denote the

conclusion assigned toOj via rule Ri as CRi . This

can be depicted as:CRi

Ri⇐= vj1 ∧ vj2 ∧ . . . ∧ vjk
,

wherejk is the number of evidences (observations) in
the tail of the rule. The meaning ofRi depends on
the applications at hand. For example, a protein’s type
can be expressed as a conjunction of amino acids.

• D is the conclusion transition probability matrix,
D = {dij}, wheredij = P (CRi

| CRj
),
X

j

dij = 1.

An example of the interaction between sequences of ob-
servations and their corresponding rule conclusions can be
illustrated by Figure 1. The choice of the topology of the
network in the figure depends on the information we have
regarding a particular application. We now define the prob-

Figure 1. Structural HMM topology.

lems that are involved in a structural hidden Markov model.

2.1. Problems assigned to a Structural HMM

There are four problems that are assigned to a SHMM:
(i) Probability evaluation, (ii) Statistical decoding, (iii)
Structural decoding and (iv) Parameter estimation.

2.1.1 Problem 1: Probability Evaluation

The evaluation problem in SHMM is to compute:
P (O | λ) = P (O1CR1 , O2CR2 , · · · , OsCRs | λ)

=
sY

i=1

P (OiCRi
| Oi−1CRi−1 , . . . , O1CR1 , λ). (1)

BecauseCRi is conditionally dependent onCRi−1 and
Oi is independent ofCRi−1 , Equation 1 can be expressed
as:

P (O | λ) =
sY

i=1

P (OiCRi
| CRi−1 , λ),

=
sY

i=1

h
P (CRi

| Oi, CRi−1 , λ)× P (Oi | CRi−1 , λ)
i

=
sY

i=1

h
P (CRi

| Oi, CRi−1 , λ)× P (Oi | λ)
i

=
sY

i=1

P (CRi
| Oi, CRi−1 , λ)×

sY

i=1

P (Oi | λ).

We assume for now thatCRi is independent ofCRi−1 ,
finally, this provides:

P (O | λ) =
sY

i=1

ci(i)×
X

q1,q2,...,qri

πq1bq1 (v1)aq1q2bq2 (v2) . . . aq(ri−1)qri
bqri (vri ).



2.1.2 Problem 2: Statistical Decoding

The statistical decoding problem consists of determining
the optimal state sequenceq∗ = argmax

q
(P (O, q | λ))

that best “explains” the sequence of observations . It can be
computed using Viterbi algorithm as in traditional HMM’s.

2.1.3 Problem 3: Structural Decoding

The structural decoding problem consists of determining
the optimal rule conclusion sequence
C∗ =< C∗R1

C∗R2
. . . C∗Rt

> such that:C∗ = argmax
C

(P (O,C| λ)).

We define:δt(i) = max
CR1CR2 ...CRt

P (O, CR1CR2 . . . CRt = i | λ)

that is,δt(i) is the highest probability along a single path,
at time t, which accounts for the firstt observations and
ends in rule conclusion i. Then, we estimate the following

by induction: δt+1(j) =

�
max

i
δt(i)dik

�
bj(vt+1). Similarly,

this can be computed usingViterbi algorithm. However, we
estimateδ in each stepthrough conclusion transition prob-
ability matrix instead of state transition probability matrix.
This optimal sequence of conclusions describes the struc-
tural pattern piecewise.

2.1.4 Problem 4: Parameter Estimation

The re-estimation phase of the parameters{πi}, {aij},
{bj(k)} and{dij} is conducted as in traditional HMM’s,
using the Baum-Welch optimization technique. However,
the most difficult problemis the estimation ofcj(i). There
are two types of uncertainty that can be expressed using
first-order logical rule:statistical uncertainty, where we are
uncertain of the distribution of conclusions across proper-
ties, andpropositional uncertainty, where we are uncertain
of the truth of logical sentences [6].

We define both of the uncertainties in the following:

• Statistical Uncertainty: In this method, the uncer-
tainty on the conclusion is expressed as a posterior
probability. Usingnaive Bayes’ rule, we make the fol-
lowing estimation:

P (CRi
|vj1vj2 . . . vjk) ≈

kY

j=1

P (vij |CRi
)× P (CRi

)

X

CRi

kY

j=1

P (vij |CRi
)× P (CRi

)

.

(2)

The termP (vij | CRi) is estimated using the ML
criterion. The prior distributionP (CRi) is assumed to
be uniform.

• Propositional Uncertainty: Nilsson was among the
first to consider the problem of representing proposi-
tional uncertainty, i.e., uncertainty regarding the truth
of logical sentences. The implication rule

CRi

Ri⇐= vj1vj2 . . . vjk is viewed as an entailment be-
tween a tail and a head predicate. We transform the
chain relation into predicates:
vj1 ∧ vj2 ∧ . . . ∧ vjk

=⇒ CRi

A1 ∧A2 ∧ . . . ∧Ak =⇒ CRi

where Ak = vjk
. If A = A1 ∧ A2 ∧ . . . ∧ Ak

then the problem consists of determining the proba-
bility assigned toCRi given the probability of the en-
tailment (that depends on our expertise in the appli-
cation at hand) and the probability assigned toA (es-
timated). The truth of logical sentences is defined in
term of possible worlds. A probability distribution
overpossible worldsis built. An agent’s world model
express its degree of belief that any possible world
is the actual world, and can be used to compute the
degree of belief (sentence probability) of a sentence.
Given a probabilistic knowledgeP (A) that expresses
our propositional uncertainty, we would like to com-
pute the degree of belief forP (CRi

). The random
worlds formulation allows us to reason under proposi-
tional uncertainty, given a world model. However, we
are immediately faced with identifiability: in general,
our probabilistic knowledge baseP (A) can be com-
patible with infinitely many possible world models.
We can either accept this indeterminacy or introduce
an additional criterion such as the “Jaynes” [4] max-
imum entropy that eliminates it. In this probabilistic
logic framework, the probability of an observation is
p(vjk

) = p(vjk
= true), which is the probability that

a predicate istrue. The truth table of predicates of the

rule CRi

Ri⇐= vj1vj2 . . . vjk is illustrated in Table 1.
To estimate the probability ofP (CRi), we need to de-

Possible worlds:
w1 w2 · · · wk−1 wk

vj1 0 0 0 0 · · · 1 1 1 1
vj2 0 0 1 1 · · · 0 0 1 1
· · · · · ·
vjk

0 0 0 0 · · · 0 0 1 1
A 0 0 0 0 · · · 0 0 1 1

A =⇒ CRi 1 1 1 1 · · · 1 1 0 1
CRi 0 0 0 0 · · · 0 0 0 1

Table 1. Logical truth table assigned to predicates

termine the vectorW = P (wi) such thatC · W = Π,
whereC is the consistent logical truth table,W is the
probability vector assigned to possible worlds, andΠ
is the probability vector assigned to predicates. In or-
der to determine a unique solution to this problem, we
maximize the entropy assigned to the possible worlds
distribution [4].



3. Application and Experiments

We have applied this research in order to aid automo-
tive design engineers in predicting customers’ perceptions
on particular car makes before these cars are put into mak-
ing. This enables automotive companies to save money by
data mining customers preferences. We collected 228 im-
ages of regular cars with their three views (front, size and
rear, i.e., 684 images). During our survey, we extracted the
contour of the three views of the whole car (thus removed
the influence of colors on a student’s opinion), then pre-
sented these contours to 100 university students. The stu-
dents were asked to give their opinions on the three views
of a car viewed separately as well as their opinions on the
car as a whole. Opinions are adjectives that express their
feelings of the car view at first sight. Thus we obtained 912
adjectives clustered with synonymy using the online lexical
database WordNet [2]. Each centroid of a cluster is called a
perceptionwhich is a conclusion in SHMM modeling. Each
respondent’s opinion (adjective, such as beautiful, sporty,
etc.) belongs to one and only one perception.

Therefore, we extracted the contour of “front (f)” and
represented it asOf = (v1v2 . . . vrf

), wherevi are bits
representing the chain code directions of the contour and
rf is the length ofOf . The customer’s opinion assigned
to this view is represented byCRf

, whereCRf
is the con-

clusion assigned to ruleRf that defines how the opinion of
this view is obtained from the chain code description of its
contour. An example of such a rule is:“attractive” ⇐=
3017432 . . . 12, which means that the contour of the view
represented by the chain code string is tagged as “attrac-
tive”. We did similar task on the “side (s)” and the “rear
(r)” views and obtainedOs, CRs , Or andCRr respectively.

The k-nearest neighbors and neural networks classifiers
have also been experimented in order to compare them with
SHMM. We used the statistical uncertainty discussed in sec-
tion 2.1.4 for classification. Preliminary performance re-
sults are depicted in Table 2. If our predicted conclusion
(or category) isCp and the true conclusion obtained from
survey isCt, then our precision is defined as:

Precision =
∑

δ(Cp − Ct)
| input patterns | (3)

whereδ(x − a) is the Kronecker symbol which is “1” if
x=a, and “0” otherwise, the denominator| input patterns |
represents the total number of patterns (external contours of
a car). SHMM outperformed the two traditional classifiers
since its accuracy is 90%. This optimal prediction of user
perceptions is fed to the design engineer before the car is
put into making.

Precision (%) k-NN NN SHMM
Sample Size

140 cars 52.1 54.2 66.7
228 cars 73.2 78.6 90

Table 2. Performances obtained using the k-nearest neigh-
bors, the neural network and the SHMM classifiers.

4. Conclusion and Future Work

We have introduced a novel mathematical paradigm that
is capable of exploiting both statistical and syntactical in-
formation at the same time. We believe that the concept
of structural hidden Markov model will bridge the gap
between statistical and syntactical researchers within the
PR community. Our approach relates visible observations
through their contribution to a same logical conclusion of
a syntactic rule. We have seen that the structural decod-
ing can have two different interpretations. We have used
the statistical uncertainty approach to answer the “structural
decoding problem”. We have obtained promising results in
the automobile application described above. However, this
research is still ongoing, more data need to be collected in
order to measure the real contribution of SHMM’s. We also
need to test the propositional uncertainty approach and ap-
ply SHMM’s in other areas.
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