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in Lhis paper & novel parsdigm thal we named “strue-

ov mostlel™ (SHBM, 14 oxtemds traclitsanal bidden
-[[-I}llj.hj by ennsidering olservmibons s sirings de-
listhe enntext-free grammar. These observalions
senes lhey sl conbribufa fo prodece a parficwlar
MMEs overcome Lhe limit of state conditbonal inde.
'the okmervnlions lm HMMs Thas they are capable o
time seviex dods, W have applied SHAM o

e’ prefireieis for mutomotioe designs. & Ssfobd
has shevwn n 9% lncrense of SHML accusscy owver

miodels (HMMs) liove been nsed sinee theire
in speech processing and recognition in the
[1-4). Neighbour areas such ns signal process-
andwriting and text recognition [6] have also

iz spread to many other arcas such ns mage
nnd computer vision [7], biosciences [8], con-
ndl others. However, the number of problems
Ms can be applied is insignificant compared to
=mis we can epcowneter.  The main reason
the fact that HMMs have a clear concep-
ork and the ability to learn statistically, but
H: to nccount for struciuml informalion
::m:r. f1o, 11f. The symbols of an input se-
assumed to be state conditionally independent.
Iz make no use of structure, elther topo-
splun] [12]. This lack of structure inlerent
dMs has drastically limited the recognition
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TRUCTURAL HIDDEN MARKOV MODELS
ASED ON STOCHASTIC CONTEXT-
FREE GRAMMARS

D. Bouchaffra* and J. Tan*

and classification tasks of complex patterns. The reason
is that n pottern containg some relalional informalion
froan which it is difficult and sometimes impessible to de-
rive an appropriate feature vector. Therefore, lhe ana-
{ytical approaches which process the patlerns only on a
quaniilative basis but ignore the interrelationships for
strucinre ) belween the components of the palterns quile
aften fuil. Cai and Lin's approach integrates the statistical
and stowctural Information for unconsteained lnndwritten
numeral recognition. Their method s macro-states Lo
muoddel pattern structures [13]. However, beskdes the fact
that this method uses statisticn] and structoral informa-
tion in two different steps, their methodology iz application
driven and therefore Is very specific. 2l and Garcin-Frins
proposed two novel generative methods which make use
of probabilistic contexct-free grommars and HMMs respee-
tivedy to model the end-to-end error profile of rmdio chan-
nels [14). However, they did not provide a teol o merge
standard HMMs with probabilistie context-lroe grammars
inbo a single probabilistie leamework.

Because of the gap between stolistics and syntas,
we introduce in this paper a novel paradigm—structural
hidden Markor niaded (SHMM), that cmbed grammstical
rules to identify stroctural mformation. The strictores
are built through conclusions (or variables of & grammar)
that aceept the Input sirings (sequences of abservations).
In other words, statistics controls the distribution of the
visible observation sequence wheress syntax informs about
whint these observations are forming os o whole: it is their
structure,

The organization of this paper ks as lollows: Section 2
introduces the concept of SHMM. The problems assigoed
to an SHMM are defined in Section 3. An application of
SHMM ns well as experiments are explained in Section 4.
Finally, the conclusion and the Muture work are laid in
Section b

2, The Concept of SHMNMDM

In this section, we introduce a mathematical description of
the SHMM concept that goes beyond the tenditional HMM
ag it emphasizes tho structure {or syntnx) of e visible
soquenee of observation.




In teaditional HMMs, the visible olservatbons are
nzmnmed b0 be siele condibionally independent.  Let
D= (oyey - --or) be the observation sequence of length
T anel g=(quqz---gr) be the state sequence where gy
i= the initial state. Given a model A, we can write:
P(O| A= Loy o PIOa| A), and PO, g] M) = P(O]g,A)
# Pl | A), amd using state conditionnl independones, we
abtain

T
PO 19, A) =[] Ploclan A).

dml

Hovweever, there are seversl settings where the conditional
independence nssammption doesn’t hold. For esmmple, while
stamddnrd HMMz perform well in recognizing amino ncids
and consequent construction of proteins rom tle Aest level
structure of DNA ssquences [15, 16], they are inadogqunte
for predicting the secondary structure of a protein. The
reason for the inadequacy comes from the fuct that the
saume order of amine acid sequences have different folding
modes in natural circumstances [8). Therefore, there is o
need to balpnes the loss incurred by this state conditional
Itlll']ElmH:'EllrE mlllﬂ]’lrjﬂﬂ-

Our thrust is thal a compler patlern © can be
viewed a5 o seqrence of conslituents O made of sirings
of symbols fnlerrelated in some wap,! Therefare,
eoch observation sequence O B nol only one sequence
in which all chservations are conditionally independent,
bart a sequence Lthat is divided ot a sertes of 5 strings
O = (o, 04+ -0y, ) (1 20 = s). The symbols of & string are
refated in the sense thal they define a local structure O
of the whobe complex pattern, This strectoural information
is captured through o probabilistic context-lree grommnr
where Lhe symbsols o are evidences that contrilute to the
production of o structure Cy. For example, s cloud of
porinds representing o sequence of olsermtions O forms
& round shape C with a certain probability P{C; | 04).
Sitnilarly o sequence of phonemes produces & word with a
certain probability depending on the context. The higher
thie comnplexity of a pattern, tle higler tlie mamber of gteue.
tires needed to describe this pattern locally. Furthermore,
the statistical information ks expressed through the prob-
ability distribution of the structueal informatlon seoense
thnt deseribes the whole pattern. Therefore, statistics and
synknx are merged together in one single feamework. 17
Om (0,0, . "rﬁ-r].{ﬂ:hﬂla“'ﬂ'i..r Erig O M ey
Doy Oy e ooy s, ) (where vy is the number of observations
in subsequemce Oy and s ks the nunimber of observatbons in
subsequence O, eic) and © = {Cy, Cs, .. ., O], then the
probability of a complex poetterm O given a model A can
be written asz P(O|A) =% - P{0,C|A). Therefore, we
need to evaluste PO, C|A). As the model X is implicitly
present cucing the mmllr.u.li-nq of this joint probability, it s
omitted. Thus we lave:

P(O,C) = P(C,0) = P(C|0) x P(O)

= P(CyCa- - Cg | Oy - Og) % PO

! In other words, it ls possible to decrense the resslution lovel of
o cotaplex patlem.
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= P(Cg - G0y |Og - - 02 x PO)
= P(Cg|Cs-1---CGC10g--- Oy}

% P{Cgoy » = T3 | Dg - 0] = PO {1}
We nssume that O depencds only an O and Oy (as lus-
trated in Fig. 2.}, and the structure probability distribu-
tion is a Markov chnin of order 1. The reason behind this
Markovian assumption comes lrom cognitive scbenee. In
[act, it iz well established that when we perform an object
recognition task, our broin relics partly on local interae-
tions between sub-patterns describing these objecta [17].
Local interactions can alse be expressed statistically by the
meang of Morkovion felds using Gibbs distributions |15,
11]. However, as pointed out in the Introduction, our
approsch considers exelusively sequential processes Elhint
remnin within the context of HMMs,  Finnlly, we can
recursively approximate (1) as:

3
P(0,C) =[] PICi 104, Cio1) = PO)

(2)

We now evaluate P{C; | O, Ci-1) ns follows:

PIOGEi_y | GPIC)
P{OiCiy)
PIO; | Ciaa G PIG 1 | G PICS)
PO | Cica JP(Cia) -

PC | O, Cici)

As O coes pob depead on &, we lave;

P(O; | Ca)P(Ci-y | CHPC)
PIO:) P(Cizn)

PIC | QPIODPC, | Cina)
= L JPICT)

= TPICIPICOPIONPICI1)

_ PG | ) PIC | Ciy)
- P(Cy) '

P{E"! | I!I--:’lr':':".i—i] -

{(3)

From (2) anc (3), we have:

5
F[ﬂpﬂ}anﬂcdﬂﬂﬂﬂilﬁiuﬂ « PO} (4)

iy PlCi)
Moo wee can define an SHMM s Tollows:

Deefinition 1. A stricturn] hidden Markow model is o
quintuple A=is, 4, 8,0,D), wlere 7 k= the initkl stale
probability vector, A is the state tronsition probability
matrix, 5 is the state comnditional probability matrix of the
visible observations, C iz the posterior probability matrix
of n struckure given o sequence of observations, T is the
structire transitbon probability matrix,
An SHMM is characterized by the following elements:
# M, the number of hidden states in the modal, We
label the Individunl states as 1,2,., ., ¥, and denote
the state ot time £ 6= g,.
o M the number of distinct obserwations o;.
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® % the initiol state distribution, == {m:]. where
W= Plpn=iand1gic N, ymiml

* A, the stale Lransition probability distribution mae
trix, A={n;;), wheore iy = Pl =Flay =) and
IE’I-J:EH1 J.'ﬁ!_.l'!!

* B, the state conditional probability matrix of the
observations, B = (b;(£)}, in which (k) = Ploy, | g;),
l=k=Mand lSjs N, bk =1.

* F, the number of distinet structuyros,

o Is the posterior probability matrix of a stroe
bure given lis corresponding  olseorvation BCCJUCnOE,
C=P(C; | 0;) =es(5). For each O, we have
EJ; Fi'[f]' =1

A particular application requires a particular gram.
mar Gy in owhich a sructure O Is assiamed 1o 0o
via a rule B which is written ns G, 4 .
(Qi=0,,0,,...,0,). As we are using a probabilistic
context-lree grammar, there s olily one stricture (the
maost likely) thot is assigned 1o a string O,

* D the structure transithon probability motrix,

D= {dy;}, whera ﬂr';=P{c:+|".'i-l¢l"']1

Eidiml1€ij<F.

Fig. | depicts & reproesentation of an SHMM. We now
define the problems that arg involved in an SHMM.
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Figure 1. A grapliical representation of an SHAMM.

3. Problems Assigned to an SHMM

There are four problems that art assigned to an SHMAL
(i) probahility wvaluation, (i) statisticad decoding, (i)
structural decoding, and (iv) parameler estimation. We
will show how Lo solve them in this section,

4.1 Probability Evaluation

Given a model A==, A, B.C.D)and O m (N, ...,0,), an
ion sequence, we oviduate how well does the model

- Amatch 0. From (4 ) this probability can be expressed as

POIN=TPO.Cl3 =3 {H‘—E'ﬁ}u;‘*;i"" . .,,}
) 5 ' (5)

{ mi: Eﬂ' #ﬂbﬂ{n:}“ﬂlnbh{al}' . nmi—uﬂrﬁﬂr"{'nr]'
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4.2 Statistical Decoding

In this problem, we determine  the optimal slale s
quenee §* = nng B P, q | A)) that best “explning” the
*

sequence of symbols within €, This problem is similar
to probdem (1§} of the traditional HMM il can be solved
using Viterbi [1] algorithm s well.

4.3 Structural Decoding

This i the most important problem as we sttempt Lo
determine the “aptimal structyre of the model”, An
example of an eptimal sequence of structures” is: <round,
curved, straight, ..., slamted, ..., >. This sequenco afl
strisctures helps deseribing objects,  Antonomous rabots
based on this bearning machine can for exnmple be trained
1o recognize the components of o human face cescribed
i3 a sequence of shapes such as: < round (human head),
vertical line in the middle of the face (mose), round {oyes),
curved {mouth), ... =, Similarly, & customer's oplnion of
an automobile s composed of his/her opinion of the [ront,
the side and the rear of thiy mutomobile. These partial
opinicns deseribe the whobe external visy of the nutsnabile
and bmpact significantly the cuslomer's purchase declsfon,

In this problem, we determing the optinnl striscturns
sequence C° = < 7,03, ... +CF = such thet:

"= nrgfgmr:{f‘{ﬂ. | A))

We difine:

ﬁl[*]':: |“'|:."-": Ffﬂh{}i. ] r{}lic|1cffr'll\c' - 1' I ..1]'

that is, & (i) is the highest probability aleng a singhe path,
at time &, which accounts for the first £ steings and ends in
structure £, Then, by induction wie liave:

o ()
i1 (f) = [mlrl:cﬁ..ff}a'.-j] ':""'{""J___'_'P{{:',-} (6)
Similarly, this latter expression can be computed s
Viterbi algorithn, However, we estimate & in onch Eligy
through the structure transition probability matriz, This
optimal ssquence of structyres deseribes the structyral
puttern phecewise,

3.4 Parameter Estimation
F.4.1 Statistical Paramelers

In this problem, we try to oplimize the model parame-
ers A=(x, 4, B, D) to maximize PO | Al. The re-
estimation phase of the paranwters {meke {mis), (B (k)]
and {di;} is conducted ns in traditional HMMs, using the
Bawm-Welch optimization techy e [2).

* Calleet conchusions within RFGITEnOr el




(e}

s

vy, S

1
1
i
i
1
1
1
1
i
i
i
1
1
Y
i
i
i

Figure 2, Two diferent interprotations (parses) of a strue-
pure using the contexi-lree grammar.

A.4.2 Strwelural Paramelers

The most difficult problem of SHMM pormmeter estimation
iz the evaluntion of P{C; | ). To estimate this term, we
ustd o “stochastic context-lree grammar” (SCFG) [19, 30
that recognizes structures. In this SCFG each production
iz augmenbed with o probability.  The probability of a
derivation is then the product of the probabilities of the
productions used in that derivation. For example, in Fig. 2,
the structure *5* could be interpreted as “curved” {Parse
i} with a certain probability or “straight lines” (Parse )
with another probability,. Depending on the application
at hond, one interpretation coubld be more plansible then
the other. Similar ko the decoding process, & Viterbd algo-
rithim is used to fud the best parse. Usually, It = the user
wlko constriicts an appropriole grammar based on porsonel
knowleige and expericnee regarding o particular applica-
tion. Tl prolmbilities of rubes are catimated from datn
valng tlee maximm likelilood criterion [21]. To constrict
such a grammar, o set of primitives is sebected deponding
an the type of data inveleed n the application, The primi-
tives shouwld provide a reasonable description of the pat-
terns and their stroclural relations. An incoming string
% derives a structure €, this derivation is expressed s

; A By s & s % o L 0, where B nre the pro-
duction rules, o; (1<i<n=1) is an intermedinte step of
the derivation fron O Lo strncture Cp-nnid o4 s obtained
fromt ag. We consider each step of the derivntion ns n ruke
;. The production rule /f; s activated with the proba-
bility P{R,). Assuming all rules are independent, we con
estimate P(C; | O;) as: P(C; | O5) = [[in; PUR:), where
PUARGY is estimanted through the masimum likelilwood.

4. Application: Customer Preforences” Prediction

Automwtive companics place & grest eaplasis on exterior
appenrance design. They always make real-size models of
a car's exterior dezign, show them to n lot of custonwrs,
anil eollect survey data of their opinions wel feelings. This
feedbuck is then sent Lo the design dopartment. According
to the information contalned in the feedback, the exterior
design engineers rofine Hwir designs. The purpose of this
application is to build a computational method that helps
engineers to improve their designs, speed up their job
by rebensing them from e tedious manual informatkon
processing, and eventually make cars that match the need
of customers.
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4.1 Automotive Data Collection and Clustering

We collected 500 images of regular cars (no trucks or vans)
with their three exterior views (front, side, and rear, ie,
1500 imoges). A pre-processing plinse of car images has
been pecformed to aliminate some features such ns color,
lamap shapes, and tires. We painted the body with white
hackground cobor, and extracted the eontours of te three
views., Then we presented these conbours to 300 wniversity
stidents and asked them to give their opinions on te three
views of n car viewed separately. Opinlons are adjectives
tlint express students” feelings of the car views at first sight.,
Every contour is assigned different opinions by different
student= 300 students woukl probably give ns much ns
300 cifferent opinfons to one contour. We adopted the
“minjority voting” metled to obbain o unbque opinion that
is nssigned o o contour. Thus we obtained 1500 adjectives
[zome of them are bdentical) clustered with synonymy
using the online lexical reference system WordNet [22].
Ench centroid of a cluster B8 called a pereeplion. Ench
respondent’s opinion {sdjoctive) belongs to one and oaly
one pereeption.

Becnuss it s very diffeult to sequire a large automotive
data set, we generated 10 artificial ssmples of size 500
using the boolsirap re-sampling technique (23] Then,
we combined them and obtained an artificial data set
containing 10 times the date as our orgionl date set,
which monns that we hwee 5000 strings of contours and
5000 conclusions for “fromt”, “side”, amd “rear”™ views
respectively. Finally, wa divided this generated data set
into two parts, twosthicds for teaining and one-thied for
Lesting.

4.2 Chaln-Code Representation and Local Strue-
turos

The ohservations nre the autometive contours represented
by chain-code [24] strings. We used the standard imple-
mentatbon of the chain code bosed on the cight directions
(0-T). Each loeal structure O I8 o certain shape repre-
sented by o subsequence of the contour chain-code string,
To find the boeal structures, contoirs are segnsented aq
sequence of O using the shape convexity criterion. The
sign of the second derivative is computed for ench point
located on the contour. Then three rules were used to
cdetermine where to segiment the contour: (1) [f the second
derivalive changes its sign on a parficulor poini of the
conbour, then this point iz o boundary of the segment,
othermise we continue bo extend the segment. (2} If the
second derivative of o point is 0, then we consider ils
sign remaing cither posilive or negelive o8 he second
derivale of ils preceding poind on the conbour, (3) An
exceplion of rule (1) is: if the length of a seqment s less
than thresheld “5%, then we consider this segment as
an extension of ils preceding segmend. [ this seqmaond
iz the firal on the confour, then we concatenale #t with
ils following seqgrment,

Fig. 4 shows how these three rules work. The black
points form segment 1. The gray points form segment 2,

—
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of & contour are formed according to the three rules,

Fule 1
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b2

The two gray poluts with solid boundaries are in segment
X

4.3 Training and Testing Results of SHMM

Onee the optimal segmentation hos been computed for
the training data, we partitioned the set of segments into
chusses of equivnlences. The partitioning was done as
Folboveaz

o Computer the edit distance botween each pair of chain-
codle strings of segments.

& Cluster the segments. Each cluster is o class of equiv-
mlenee.

» Determine the representative value of ench equivalenes
clags, The representative value of a class is a chain-
code string that has the shortest avernge distance to
all pther members of that class,

For a segment O, we computed its edit distances to
all reprosentative values of clisses of equivalence. We
dhise the shortest one, and let ils corresponding class
of equivalence be €. If the number of segments in Cj
ik L, then c:(7) is estimated by: e(7)= Ny /L x 100%,
where Ny is the number of @)'s nearcst L neighbours
that are in €. Thus, matrix £ was constructed after
partitioning, A contour is represented by a sequence of
bocal structures after partitioning. Then we used the
Baum-Weleh optimization technigque to eslimate matrix
T, her pacameters, ¥, A, 5, wer extimmbed like in
traditionn] HMMMNs,
Oisce the SHMM for this application i built, we used
the testing dotn set to evaluate the nocurncy. We hove
selectid five perception entegories in this application which
are the five clustors of adjectives obtained wsing the lexieal
database WordNet. Therelore five models A; have been
generated, and each model is built to learn one perception
category. The number of samples in each category is
the cardinnl of each cluster. Currently the categories we
have obtained and their numbers of samples are: ugly—
165, ordinary—323, nice—60, attractive—487, benutiful—
405, The best model A° for each side & computed vin:
A = g maxy, PO | A
I the predicted model is A, and the true model is Ay,
then our precision is defined as: Precision =3 8, = A}/
|input patterns |, where §{z = a) is the Kronecker symbal
which is “1" il x=a, and “0" otherwise, The denomina-
tor | inpul patterns | represents the total number of pat-
termns. The numerntor ks e number of correctly classified
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contoirs and the denominator §s the number of all three
exterior view contours in the testing data sel.

We howve compared Lhe SHMM approach with the
teaditionn]l HMM classification technbqee. The accuracy
computation in the case of the HMM is based on the
comparison between the predicted category and the true
eategory (from survey) for ench view separately, However,
the nceurncy in the case of the SHMM is bosed on the
comparison of the predicted and the true sequence assigned
to the throe views ol onee.  The design engineers ane
intorosted in discovering the faws from the three views
separately rather than from the whole car. For example, in
thoe ease of HMM, if the front view perception of Codillac
ext is predicted as “attractive” while the Lrue category as
“ordinary”™ then we hove an error of clssifiention. Thaus,
the HMM was applied to each view of the car sepamtely.
Each view contributes to the prediction result without
interfering with othor views,

We divided the images of the 500 cars into fve sels,
each of which contains images of 100 cors. Then we selected
four sels for training and the remaining one for testing. We
ropeated this procedure 5 times with each time selecting
a different st for testing. Table | shows the accuracy of
cach round and the overall sccuracy.

Tnble 1
Performance Comparion Between HMM and SHMM
Clnssifiers in Five Rounds of Troiming and Testing

pModel | HMM | SHMM
Round | (%) | (%)

| T4 =1

2 i 1]

a (i &b

E | Ta T

3 [ a2
Chverall] T2 alA

5. Conclusion and Puture Work

We have presented a novel mathemntical parndigm that
extends traditional HMMs by merging syntactical and sta-
tistical information into a single probabilistic framework.
Our approach relates visible observations through their
contribution to a same structure of a gyntactle rule. Doing
50, SHMMs bypass the state conditional indepedenos as-
sumption inherent to traditional hidden Markey modeling.
The SHMM repressits a preliminary fusion between stalis-
tics and syntax [25]. The antomotive application shows
that the SHMM concept ks promising as it has outper-
formedd the tracditional HMM clnssifier. However, this isan
undlergoing research, more data need to be collectedd, aml
comparizons with other classifiers are necessary o measure
the global contribution of SHMMs.
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