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a b s t r a c t

Current extensions of hidden Markov models such as structural, hierarchical, coupled, and others have the

power to classify complex and highly organized patterns. However, one of their major limitations is the

inability to cope with topology: When applied to a visible observation (VO) sequence, the traditional HMM-

based techniques have difficulty predicting the n-dimensional shape formed by the symbols of the VO

sequence. To fulfill this need, we propose a novel paradigm named ‘‘topological hidden Markov models’’

(THMMs) that classifies VO sequences by embedding the nodes of an HMM state transition graph in a

Euclidean space. This is achieved by modeling the noise embedded in the shape generated by the VO

sequence. We cover the first and second level topological HMMs. We describe five basic problems that are

assigned to a second level topological hidden Markov model: (1) sequence probability evaluation,

(2) statistical decoding, (3) structural decoding, (4) topological decoding, and (5) learning. To show the

significance of this research, we have applied the concept of THMMs to: (i) predict the ASCII class assigned

to a handwritten numeral, and (ii) map protein primary structures to their 3D folds. The results show that

the second level THMMs outperform the SHMMs and the multi-class SVM classifiers significantly.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of hidden Markov models (HMMs) has been
introduced in the sixties by Baum and his colleagues [1]. It is a
widely used approach that models time series problems from a
statistical view. The real milestone of HMMs occurred when they
were applied to speech processing and recognition in the late
1980s [2,3]. Related areas such as signal processing [4,5], and
handwriting and text recognition [6–8] have also exploited the
resources of these stochastic models. Half a decade later, HMMs
spread to many other areas such as image processing, computer
vision [9], biosciences [10], and control [11]. Promising results have
been obtained from the use of HMMs in several applications in the
aforementioned areas. However, the number of problems that
HMMs can model is insignificant compared to all problems one
may encounter. In other words, the use of HMMs by practitioners
remains scarce. The main reason behind this limitation is explained
by the fact that HMMs are unable to: (i) account for long-range
dependencies which unfold structural1 information and (ii) capture
topological features [12] such as the shape2 formed by the visible

observation (VO) sequence. Because the traditional HMMs modeling
is based on the hidden state conditional independence assumption
of the visible observations, therefore, HMMs make no use of
structure. Furthermore, the fact that the HMM state transition
graph is not embedded in a Euclidean space, therefore HMMs make
no use of topology. This lack of structure and topology inherent to

standard HMMs has drastically limited the shape recognition task of

complex objects.

To overcome the lack of structure inherent to the traditional
HMMs, a few number of approaches have been proposed in the
literature. The hierarchical hidden Markov models (HHMMs)
introduced in [13] are capable to model complex multi-scale
structure which appears in many natural sequences. However, the
original HHMM’s algorithm is rather complicated since it takes
O(T3) time, where T is the length of the sequence, making it
impractical for many domains. To decrease the complexity
of the HHMM’s algorithm, Murphy and Paskin showed that an
HHMM is a special kind of dynamic Bayesian network (DBN), and
thereby derive a much simpler algorithm whose complexity is
O(T) [14]. This connection between HHMMs and DBNs enabled
the complexity of the basic HHMM’s algorithm to be reduced
further.

The structural hidden Markov models (SHMMs) introduced
in [15] offer a methodology that automatically identifies the
different constituents of a VO sequence. These constituents
known as ‘‘local structures’’ are computed via an equivalence
relation defined in the space of the VO subsequences. Other
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Pattern Recognition 43 (2010) 2590–2607



Author's personal copy
ARTICLE IN PRESS

graphical models such as ‘‘coupled HMMs’’ (CHMMs) [16],
factorial HMMs (FHMMs) [17], ‘‘event-coupled HMMs’’
(ECHMMs) [18] and ‘‘input–output HMMs’’ (IOHMMs) [19] that
illustrate different architectures have also been proposed in the
machine learning community to enhance the capabilities of the
standard HMMs. Nevertheless, this generalization of the hidden
Markov models to capture local structures did not address the

shape modeling problem of the VO sequence. As far as we are aware,

the embedding of topological features (e.g., shapes) of these local

structures within HMMs has not been addressed in the literature.
An other different approach that contributes in building

structures is due to Geman’s work in vision. He introduced the
‘‘compositionality’’ operation as an ability to construct hierarch-
ical representations of scenes, whereby constituents are viewed in
an infinite variety of relational compositions. Amongst all possible
composition rules that contain syntactical information, statistical
criteria such as MDL (minimum description length) and Gibbs
distribution have been used to select the optimal interpretation
[20]. However, even if this approach unfolds the optimal scene in
a tractable manner, it does not reveal the underlying shape of the
objects of the scene.

We propose in this paper a machine learning paradigm that

extends the traditional HMMs by embedding the nodes of the state

transition graph in a Euclidean space [21]. This action allows the
recognition of objects that exhibit shapes. This new paradigm
entitled topological hidden Markov models (THMMs) extends the
traditional concept of HMMs by: (i) unfolding the constituents of
the entire VO sequence and (ii) capturing their shapes. The first
level THMMs extracts the global shape formed by the VO sequence.
However, the second level THMMs decomposes the entire VO
sequence into segments before capturing their local shapes.

There are several applications where THMMs can be applied:
A first one would be in speech recognition where the pitch contour
(rise and fall of the voice pitch) assigned to some speech units
(phonemes, syllables) groupings will be extracted to provide
complementary information about the uttered phrase. We believe
that the fusion of a locale and a global analysis of the speech signal
will be able to enhance the speech recognition task. A second
application would be to classify celestial objects based on
morphological features. It is well known that the ages of galaxies
are explained in part by the shape formed by their constituents
(large scale aggregates of stars, gas and dust). The galaxy
classification task will certainly leapfrog our understanding about
the origin of the universe. A third application consists of predicting
a protein 3D fold known as tertiary structure given its primary
structure (linear sequence of amino acids). Finally, THMMs can be
helpful in remote sensing images such as pollution control, crop
inventory that involves monitoring and management over a wide
agricultural area or seismic wave analysis for earthquake prediction.

The organization of this paper is as follows: Section 2 clarifies
the notion of VO sequence through several examples from
different applications. Section 3 depicts the topological mapping
between the VO sequence and the shape it depicts. Section 4
provides a brief description of the traditional HMMs. The
structural hidden Markov model formalism is the object of
Section 5. The novel concept of topological hidden Markov models
is introduced in Section 6. We cover the first level THMMs, the
optimal segmentation problem, and the second level THMMs.
Two applications are presented in Section 7. Finally, the conclu-
sion is laid in Section 8.

2. The visible observation sequence

The notion of visible observation sequence has been used in
many different contexts in the pattern recognition and machine

learning community. However, a rigorous definition and the scope
of this notion have been often overlooked; they have rarely been
addressed thoroughly by researchers. We define a VO sequence as
a flow of symbols ordered by time. However, we define a unit of

information (UNIF) as a shape formed by a group of symbols. If the
entire VO sequence has a shape, therefore its shape represents a
UNIF that we call object. However, if the VO sequence is made of
subsequences that possess shapes, therefore each shape is by
itself a UNIF. In this case, the sequence of UNIF’s obtained
represents an entire object. The representation of the UNIF shape
is projected into a Euclidean space. A UNIF can unfold only
through a meaningful organization of the VO sequence. In other
words, not all VO sequences constitute a UNIF but only those
which disclose structural constituents of the observed object. We
introduce some applications from different areas that are
intended to clarify the notions of VO and UNIF. A first application
would consist of classifying the structure of minerals based on the
topology of the bonds that link the atoms in the crystal. For
example, the butane gas linear formula ‘‘CHHHCHHCHHCHHH’’
represents a VO sequence; the two symbols ‘‘C’’ and ‘‘H’’ located at
different positions span the entire observation sequence. How-
ever, the same formula can be written in a more informative way
as a sequence of UNIFs: ‘‘CH3–CH2–CH2–CH3’’. In this formulation,
the shapes of the structural parts of the butane which are ‘‘CH3’’
and ‘‘CH2’’ are emphasized. A UNIF in the butane gas molecule is
the shape associated to either the subsequence ‘‘CH3’’ or ‘‘CH2’’.
The UNIF’s are certain rearrangements of their constituents that

produce shapes (refer to Fig. 1).
A second application is in the area of handwriting recognition:

it consists of mapping handwritten word sequences into their
ASCII representations. A handwritten word sequence (or script)
such as: ‘‘The quick brown fox jumps over a sleazy dog’’ is viewed
as a sequence of pixels. However, after several data processing
phases including word segmentation, the VO sequence unfolds.
Each isolated character can be categorized as one of the five
classes ‘‘Ascender’’ (A), ‘‘Descender’’ (D), ‘‘Median’’ (M), ‘‘Both
Ascender–Descender’’ (B), and ‘‘Space’’ (S). These classes used in
the document analysis area are usually predetermined via an
unsupervised clustering algorithm. Since the first handwritten
character of this script that corresponds to the letter ‘‘T’’ is rising
up (or moving upward), therefore it is depicted as ‘‘A’’. The second
handwritten character assigned to the letter ‘‘h’’ is also perceived
as ‘‘A’’, whereas the third character assigned to ‘‘e’’ is depicted as
‘‘M’’ since it remains in the median line of the handwritten script.
Following the same procedure, we can finally represent the script:
‘‘The quick brown fox jumps over a sleazy dog’’ as the VO
sequence ‘‘AAMSDMMMASAMMMMSAMMSDMMDMSMMMM-
SAAMSMAMMMDSAMD’’. This VO sequence transcription is not
unique; it is simply one possible manner of globally discerning
handwritten phrases. However, it is worth to underscore that a

particular ‘‘instantiation’’ of a group of symbols made of A, M, D and

their connection produces a handwritten word with a shape. Because

a word has a potential to convey a meaning, it represents a UNIF

(refer to Fig. 2). A shape of a handwritten word can be extracted

Fig. 1. The butane molecule where: (a) represents its VO sequence O =

CHHHCHHCHHCHHH. Each symbol is either a carbon or a hydrogen atom. Part

(b) depicts the VO sequence instantiation into UNIF’s and (c) outlines UNIF shapes

captured by their external contours.
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using for example a horizontal or a vertical histogram of the
scanned image of the handwritten word. This histogram maps the
row (or column) number (x-axis) to the number of pixels
encountered during a horizontal or a vertical scanning of the
bitmap image of the handwritten word (y-axis).

A third application would consist of predicting the protein 3D
fold (or conformation) given its primary structure. In this
application, the sequence of amino acids ‘‘GLY, ILE, VAL, CYS,
GLU, GLN, ALAy’’ known as the primary structure is the VO
sequence O = o1, o2,y,oT of the protein 3D fold (refer to Fig. 3).
The UNIF’s are the protein secondary structures: Alpha-Helix

(there are other forms of helices, but they are less stable and
therefore rare), the Beta-Sheet, the Beta-Turn, and others. They
represent 3D forms of local segments of proteins. However, they
do not describe specific atomic positions in 3D space, which are
considered to be tertiary structure. One possible instantiation of
the amino acid sequence produces a protein secondary structure
sequence. In the case of other applications such as speech
recognition, the VO sequence can be assigned to the sequence of
phonemes that composes the uttered phrase. Since a word is
made of phonemes tied together in a certain organized manner, a
possible UNIF sequence in this case corresponds to the pitch
contour sequence assigned to the word sequence uttered. A
sequence of UNIF’s reveals an organized entity: some words are
used and interrelated following some linguistic rules to convey
meaning in language. Nevertheless, it is noteworthy that there are
many other possible ways to define a VO sequence and a UNIF
sequence.

3. The topological mapping: projection onto a Euclidean space

This section represents the key of the THMM’s approach since it
brings forward the topological mapping between a VO sequence
and the shape it forms. External contour points assigned to UNIF’s
capture the shape of objects such as a 3D mineral structure, a
handwritten word sequence, or a protein 3D fold. The thrust in this
task is to investigate how the observation symbols are seamlessly

tied together and transformed to form a meaningful structure of
an object. This exploration whose main goal is to bridge the gap

between continuous and discrete structures is fundamental to the

pattern recognition and machine learning community. In the protein
fold application, 3D coordinates points of amino acid atoms in the
protein are made available in dedicated repositories, and therefore
protein shape extraction becomes feasible by computing the
protein external contour. However, in order to consider the shape
information during the prediction (or classification) task of any
visible observation sequence O, one has to determine a mapping
between a segment of the VO sequence and the contour of its
UNIF. We assume that the VO sequence selected possesses a
‘‘meaningful’’ structure. We first map through a function f the VO
sequence to its UNIF: this mapping is called a ‘‘Sequence
Instantiation’’ since a UNIF can be viewed as an instantiation of
a VO sequence. We then, map through a function g the UNIF to its
shape using a contour representation technique. A Fourier or a
Wavelet coefficient vector [a0, a1,y,aj]

T describing the external
contour is computed in this phase. This mapping is called a ‘‘Shape
Representation’’. The composite function ðg3f Þ relates the VO
sequence O = o1 o2yoT to its shape vector defined in a Euclidean
space. This mapping allows the traditional HMM to be ingrained in
a Euclidean space. Therefore, metrics and topology can be
exploited within the HMM’s framework. This composite mapping
is depicted as follows:

4. Standard hidden Markov models

To better understand the contribution of the THMMs, we found
it useful to first provide a summarized description of the
traditional HMMs. For further information on HMMs, refer to [2].

Definition 4.1. A hidden Markov model is a doubly embedded
stochastic process with an underlying stochastic process that is
not observable (it is hidden), but can only be observed through
another set of stochastic processes that produce the sequence of
observations.

4.1. Elements of an HMM

We now introduce the elements of an HMM, and explain how
the model generates observation sequences. An HMM is char-
acterized by the following parameters:

� N, the number of hidden states qi in the model.
� R, the number of distinct observation Oi per hidden state,

i.e., the size of the discrete alphabet.
� The initial state distribution p¼ fpig, where pi ¼ Pðq0 ¼ eiÞ,

1r irN, and
P

ipi ¼ 1.
� The state transition probability distribution A¼ faijg, where

aij ¼ Pðqtþ1 ¼ ejjqt ¼ eiÞ;1r i; jrN and
P

jaij ¼ 1.
� The emission probability distribution, B¼ fbjðkÞg, where

bjðkÞ ¼ Pðok at time tjqt ¼ ejÞ, 1rkrR and 1r jrN, andP
kbjðkÞ ¼ 1.

An HMM is usually represented as l¼ ½p;A;B�.

Fig. 2. The VO sequence assigned to a handwritten phrase. A certain instantiation

of symbols within each segment in the VO sequence constitutes the UNIF’s which

are the handwritten words.

Fig. 3. The VO sequence of amino acids (protein primary structure) is mapped to

its UNIF (Alpha Helix: protein secondary structure) via a particular instantiation

(through stretching) of its primary structure. ‘‘Hydrophobicity’’ is thought to be

one of the primary forces driving the folding of secondary structures.

D. Bouchaffra / Pattern Recognition 43 (2010) 2590–26072592
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4.2. The three basic problems of an HMM

There are three basic problems that are assigned to an HMM,
they are:

(i) Evaluation: Given the observation sequence O = o1, o2,y, oT

and a model l¼ ½p;A;B�, determine the probability that this
observation sequence was generated by the model l.

(ii) Decoding: Suppose we have an HMM l and a VO sequence O,
determine the most likely sequence of hidden states q1,
q2,y,qT that generated O.

(iii) Learning: Suppose we are given a coarse structure of a model
(the number of hidden states and the number of observations
symbols) but not the probabilities aij nor bjk. Given a limited
set of training observation sequences, determine these
parameters. In other words, the goal is to search for the
model l that is most likely to have produced these
observation sequences.

We first focus on the evaluation problem: Let O=(o1 o2yoT) be
the VO sequence of length T and q=(q1 q2 yqT) the state sequence
with q0 as an initial state. The evaluation problem is expressed as
follows: Given a model l, and the observation sequence O,
evaluate the match between l and the observation sequence O by
computing PðOjlÞ:

PðOjlÞ ¼
X

q

PðO;qjlÞ ¼
X

q

PðOjq; lÞ � PðqjlÞ: ð1Þ

Using the state conditional independence assumption of the
visible observation sequence O, that is: Pðo1; o2; . . . ; oT jqÞ ¼QT

t ¼ 1 PðotjqtÞ, and assuming a first-order Markov chain, we derive
the following:

PðOjlÞ �
X

q

YT

t ¼ 1

PðotjqtÞ � Pðqtjqt�1Þ: ð2Þ

The evaluation problem is based on the state conditional
independence assumption of the VO sequence symbols. However,

there are several scenarios where a long range dependency between

visible observations is needed. Besides, this dependency would be
much more informative if it were not only temporal but
topological as well. In other words, we would be more advanced
if we knew what shape these related observations are forming.
Unfortunately, the notion of UNIF calls for topological features such

as shape is absent in the traditional HMM’s formalism. It has been
proven that standard HMMs perform well in recognizing amino
acids and consequent construction of proteins from the first level
structure of DNA sequences [22], however, they are inadequate
for predicting a tertiary structure of a protein. The reason for this
inadequacy comes from the fact that the same order of amino acid

sequences might have different protein folding modes in natural

circumstances [10]. In other words, it is only the shape information

that enables the discrimination between these different folding

modes.

5. Structural hidden Markov models

In this section, we present a brief mathematical description of
the structural hidden Markov models introduced in [15]. This
formalism goes beyond the traditional hidden Markov model
since it emphasizes the structure of the visible observation
sequences and their temporal positions.

In traditional HMMs, the visible observations are assumed to
be state conditionally independent. However, there are several
scenarios where the conditional independence assumption does

not hold. For example, while standard HMMs perform well in
recognizing amino acids and consequent construction of proteins
from the first level structure of DNA sequences [22], they are
inadequate for predicting the secondary structure of a protein.
The reason for the inadequacy comes from the fact that the same
order of amino acid sequences have different folding modes
in natural circumstances [10]. Therefore, there is a need to
balance the loss incurred by this state conditional independence
assumption.

The idea is that a complex pattern O can be viewed as a sequence

of constituents Oi made of strings of symbols interrelated in some

way. Therefore, each observation sequence O is not only one
sequence in which all observations are conditionally independent,
but a sequence that is divided into a series of m strings
Oi ¼ ðoi1 oi2 . . . oiri

Þ ð1r irmÞ. The symbols of a string are related
in the sense that they define a local structure Sj of the whole
complex pattern. This structural information is captured through
a relation of equivalence between the symbols oi. Each structure Sj

is a class of equivalence that gather all similar group of symbols oi.
For example, a sequence of phonemes Oi produces a word Sj with a
certain probability PðSjjOiÞ depending on the context. The higher
the complexity of a pattern, the higher the number of structures
needed to describe this pattern locally. Furthermore, the statis-
tical information is expressed through the probability distribution
of the structural information sequence that describes the whole
pattern. Therefore, if O¼ ðO1;O2; . . . ;OmÞ ¼ ðo11

o12
. . . o1r1

; o21
o22

. . .

o2r2
; . . . ; om1

; om2
; . . . ; omrm

Þ (where r1 is the number of observations
in subsequence O1 and r2 is the number of observations in
subsequence O2, etc.) and S=(S1, S2,y,Sm), then the probability of
a complex pattern O given a model l can be written as

PðOjlÞ ¼
X

S

PðO; SjlÞ: ð3Þ

We first need to evaluate PðO; SjlÞ, we can write

PðO; SjlÞ ¼ PðOjS; lÞ � PðSjlÞ; ð4Þ

¼ PðO1;O2; . . . ;OmjS1; S2; . . . ; Sm;lÞ � PðS1; S2; . . . ; SmjlÞ; ð5Þ

�
Ym
i ¼ 1

½PðOijS1; S2; . . . ; Sm; lÞ � PðSijSi�1; . . . ; Sm; lÞ� ð6Þ

conditional independence of the Oi’s with respect to the structure
sequence is assumed. A structure Si depends only on the
observation sequence Oi and the structure probability distribution
is a Markov chain of order 1. Therefore, Eq. (6) can be written as

Ym
i ¼ 1

½PðOijSi; lÞ � PðSijSi�1; lÞ�: ð7Þ

In order to show how the symbols oi are inter-related to form a
particular structure, Bayes’ rule has been applied in Eq. (7):

PðO; SjlÞ ¼
Ym
i ¼ 1

½PðSijOi; lÞ � PðSijSi�1; lÞ � PðOijlÞ�
PðSijlÞ

: ð8Þ

The organization of the symbols oi is introduced mainly through

the term PðSijOiÞ since the transition probability PðSijSi�1Þ does not

involve the inter-relationship of the symbols oi. Besides, the term
PðOijlÞ of Eq. (8) is viewed as a traditional HMM that involves
symbols within Oi. A structural HMM is defined as:

Definition 5.1. A structural hidden Markov model is a quintuple
l¼ ðp;A;B; C;DÞ, where:

� p is the initial state probability vector,
� A is the state transition probability matrix,
� B is the state conditional probability matrix of the visible

observations,

D. Bouchaffra / Pattern Recognition 43 (2010) 2590–2607 2593
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� C is the posterior probability matrix of a structure given a
sequence of observations,
� D is the structure transition probability matrix.

A structural hidden Markov model is characterized by the
following elements:

� N, the number of hidden states in the model. We label the
individual states as 1, 2, y, N, and denote the state at time t as
qt.
� M, the number of distinct observations oi.
� p, the initial state distribution, p¼ fpig, where
pi ¼ Pðq1 ¼ i at t¼ 0Þ and 1r irN,

P
ipi ¼ 1.

� A, the state transition probability distribution matrix,
A¼ faijðtÞg, where aijðtÞ ¼ Pðqtþ1 ¼ jjqt ¼ iÞ,

P
j;taijðtÞ ¼ 1 8i,

where 1r i; jrN t=1,y,T.
� B, the state conditional probability matrix of the observations,

B¼ fbt
j ðkÞ ¼ Pðokjqj at time tÞ,

P
k;tb

t
j ðkÞ ¼ 1, 1rkrM and

1r jrN.
� F, the number of distinct structures.
� C is the posterior probability matrix of a structure given its

corresponding observation sequence, S ¼ PðSjjOiÞ ¼ siðjÞ. For
each particular input string Oi, the natural constraintP

jsiðjÞ ¼ 1 is obeyed. The different structures are obtained
from a data set using an equivalence relation.
� D, the structure transition probability matrix. D¼ fdijg, where

dij ¼ PðStþ1 ¼ jjSt ¼ iÞ,
P

jdij ¼ 1, 1r i; jrF.

Fig. 4 depicts a representation of a structural hidden Markov
model.

6. Topological hidden Markov models

Because the topological concept of shape and its representation

is absent in the structural HMMs, therefore the thrust in the
THMMs formalism is to classify VO sequences made of symbols
that when grouped together and deformed in a certain manner
may exhibit shapes. It is noteworthy that not all sequences of
symbols encountered in nature possess this pattern of disclosing
shapes. Furthermore, the shapes assigned to UNIF’s are captured
by their external contours. A contour can be viewed as a discrete
signal that consists of low-frequency and high-frequency con-
tents. The low-frequency content is the most important part of
the signal, since it provides the signal with its identity: This part is
known as the pure signal. However, the high-frequency signal
conveys flavor or nuance: This part is usually associated with noise.
For example, the Fourier transform c(k) of a function f(t) is

computed for only a limited number of k values which cover
lower and higher frequency terms. Similarly, the wavelet analysis
uses two technical terms which are: approximations A (low
resolution view of the image: low-frequency components) and
details D (details of the image at different scales and orientations:
high-frequency components). Approximations refer to the high-
scale factor, these components of the signal are matched with the
stretched wavelets. However, details represents low-scale factor,
these components of the signal are matched with the compressed
wavelets. The thrust behind the concept of THMMs is to express the

probability distribution assigned to the shape of the pure signal as a

function of the Gaussian distribution assigned to the shape of the

signal noise. Therefore, the tasks in the THMMs consist of:
(i) representing the shape formed by the observation sequence
through any state of the art shape analysis technique and
(ii) modeling the noise assigned to the shape via a Gaussian
distribution.

6.1. UNIF shape representation

Let O=o1, o2,y,oT be a VO sequence of length T made of
symbols oi. Let XðtÞ ¼ fxðtÞgt ¼ m

t ¼ 1 be the closed contour representa-
tion of length m that captures the shape of its UNIF. Each
n-dimension point of this contour is designated by x(t)=[x1(t),
y,xn(t)]T. For the sake of simplicity, we focus in this paper on
three-dimension objects (n=3). Object Shape representation can
be performed in the spatial domain or in the transform domain.
Our goal is to extract the noisy part of a signal during the shape
analysis of the object. If we adopt the 3D Fourier descriptor (FD)
method to efficiently discriminate the external contour of an
object, therefore the contour X(t) (regarded as a 2p periodic
function) is approximated using an infinite sum of sine and cosine

functions. In a 3D space, if o¼ 2p� t=T (T is the total contour
length), then using the Lin and Hwangs’ direct scheme FD
representation [23], we can estimate (using a hat notation) each
point x(t) of the external contour X(t) as

x̂ðtÞ ¼

x̂1ðtÞ

x̂2ðtÞ

x̂3ðtÞ

2
64

3
75¼

a0

c0

e0

2
64

3
75þ Xk ¼ N

k ¼ 1

ak bk

ck dk

ek fk

2
64

3
75

�
cosðkoÞ
sinðkoÞ

" #
þ

X
kZNþ1

ak bk

ck dk

ek fk

2
64

3
75 cosðkoÞ

sinðkoÞ

" #
;

where ak, bk, ck, dk, ek, and fk are the Fourier coefficients
corresponding to the k th harmonics. Practically we are often
satisfied with a finite number N of these functions. The inherent
presence of noise in the raw data ot warrants the use of FDs. In the

Fig. 4. A graphical representation of a structural hidden Markov model.
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scenario where N is large, a random noise is added during the
external contour reconstruction. We assume that the noisy part in
Eq. (9) starts from k=N+1 and any other term is part of the pure
signal.

Similarly, if we adopt the 3D wavelets transform (constructed
as separable products of 1D wavelets by successively applying a
1D analyzing wavelet in three spatial directions x1, x2, and x3,
therefore we can still approximate a 3D signal using the
approximation terms A and the details term D. These two
component parts of the signal can be separately extracted using
a filter bank. The original signal is the fusion of the A and D terms;
they both contribute to the reconstruction process by revealing
complementary characteristics of the signal. Mathematically
stated: The inverse transform of a function f ðxÞAL2 with respect
to some analyzing wavelet Cjk (j: scale, k: position) is defined as
f ðxÞ ¼

P
j

P
kcj;kCj;kðxÞ, where cj;k ¼

R þ1
�1

f ðxÞCj;kðxÞdx are coeffi-
cients known as discrete wavelet transform (DWT) of f(x) [24].
A discrete parametrized closed curve that represents the shape of
a 3D object of interest is the vector: x̂ðtÞ ¼ ½x̂1ðtÞ; x̂2ðtÞ; x̂3ðtÞ�

T . If the
wavelet transform is applied independently to each of the x̂1ðtÞ,
x̂2ðtÞ and x̂3ðtÞ functions, we can describe the 3D curve in terms of
a decomposition of x̂ðtÞ. However, the noise in the image is
contained mostly in the details term D of each coordinate. This
random noise which is part of the whole image signal in the
transform domain is modeled probabilistically via a Gaussian
distribution function. This very noise is the source of the fusion

betweendiscrete structure and topology. In conclusion, whatever
image processing technique we intend to use, we can coarsely
approximate the original signal x(t) by decomposing it into a sum
of a pure signal and a noisy signal. We can write

xðtÞ � x̂ðtÞ ¼ zðtÞ � NðtÞ ðt¼ 1; . . . ;mÞ; ð9Þ

where zðtÞ is the 3D pure signal vector (based on Fourier
descriptors, or wavelet transform coefficients) assigned to low
frequency components and N(t) is a 3D Gaussian noise vector
assigned to high frequency components, with mean vector mt and
covariance matrix St .

6.2. First level THMMs: mathematical formulation

We introduce a mathematical expression of the first level

topological hidden Markov models and the different problems
assigned to it. We also provide a definition of this model and the
parameters involved. We assume that the external contour of the
shape formed by the UNIF assigned to the VO sequence is
computed using any state of the art shape analysis technique.
We also assume that the same symbol of a VO sequence can be

located at different n-dimension coordinates in the UNIF shape. For
example, the same amino acid can be located at different position
coordinates in a 3D protein fold. In this scenario, the evaluation
problem is stated as: Given a model l, the VO sequence O, an
approximation of its UNIF external contour sequence
X̂ ðtÞ ¼ fx̂ðtÞgt ¼ m

t ¼ 1 ; evaluate the match between l and this VO
sequence O by computing P½Ojl�. If q stands for the hidden state
sequence assigned to O, then

PðOjlÞ ¼
X

q

P½O; X̂ ðtÞ; qjl�: ð10Þ

Using the conditional probability rule, we have

P½O; X̂ ðtÞ; qjl� ¼ P½X̂ ðtÞjO;q;l� � PðOjq;lÞ � PðqjlÞ: ð11Þ

The product PðOjq;lÞ � PðqjlÞ expresses a traditional hidden
Markov model. Finally, the term that remains to be computed is
P½X̂ ðtÞjO; q; l�. By replacing x̂ðtÞwith its ðzðtÞ � NðtÞÞ decomposition,

we obtain

P½X̂ ðtÞ ¼ fx̂ðtÞgt ¼ m
t ¼ 1 jO;q� ¼ P½fNðtÞ ¼ x̂ðtÞ 	 zðtÞgt ¼ m

t ¼ 1 jO; q�: ð12Þ

However, it is reasonable to assume that the random noise
embedded in the contour 3D points is independent of the hidden
state sequence q, but depends only on the visible symbols
representing the raw data O, therefore

P½fNðtÞ ¼ x̂ðtÞ 	 zðtÞgt ¼ m
t ¼ 1 jO; q� ¼ P½fNðtÞ ¼ x̂ðtÞ 	 zðtÞgt ¼ m

t ¼ 1 jO�; ð13Þ

where N(t) is a multivariate Gaussian distribution. Finally, the first
level THMMs evaluation problem can be written as

PðOjlÞ �
X

q

P½fNðtÞ ¼ x̂ðtÞ 	 zðtÞgt ¼ m
t ¼ 1 jO� � PðOjq; lÞ � PðqjlÞ: ð14Þ

Since, each noise point on a contour depends only on its
observation symbol data ok, therefore Eq. (14) can be extended to

PðOjlÞ �
X

q

Ym
t ¼ 1

P½NðtÞ ¼ x̂ðtÞ 	 zðtÞjox̂ðtÞ� � Pðq0Þ � PðotjqtÞ � Pðqtjqt�1Þ

" #
;

ð15Þ

where ox̂ðtÞ are the k symbols of the VO sequence such that
f ðoÞ*x̂ðtÞ:

P½NðtÞ ¼ x̂ðtÞ 	 zðtÞjox̂ðtÞ�

¼
1

ð2pÞ3=2
jStj

1=2
� exp �

1

2
½NðtÞ�mðtÞ�TS�1

t ½NðtÞ�mðtÞ�
� �

:

Both the noise NðtÞ ¼ x̂ðtÞ 	 zðtÞ, and the mean mðtÞ are 3D vectors.
The mean vector and the covariance matrix are respectively

ML-estimated as: m̂ ¼ ð1=kÞ
Pt ¼ k

t ¼ 1 NðtÞ, and Ŝ ¼ ð1=ðk�1ÞÞ
Pt ¼ k

t ¼ 1

½NðtÞ�m̂�½NðtÞ�m̂�T , respectively. We now define the first level
THMMs:

Definition 6.1. A first level THMM is a quadruple l¼ ½p;A;B; T �,
where:

� p¼ fpig ¼ Pðq0 ¼ eiÞ is the initial hidden state probability
vector,
� A¼ faijg ¼ Pðqtþ1 ¼ jjqt ¼ iÞ is the hidden state transition prob-

ability matrix,
� B¼ fbjðkÞg ¼ Pðok at time tjqt ¼ ejÞ is the emission probability

matrix,
� T ¼ P½NðtÞ ¼ x̂ðtÞ 	 zðtÞjox̂ðtÞ� is the probability distribution

function assigned to the noise produced by the k contour
points x̂ðtÞ that belong to f(o).

Conceptually, we view the generation mode of the THMM’s
formalism as follows: Each symbol Oi of a VO sequence O is
emitted from a hidden state qjAf1;2; . . . ;ng at each time unit. A
sequence of symbols is therefore created and distorted (through
the mapping f) to form a particular UNIF whose shape is produced
through the THMMs. The THMM’s formalism tells what is the
shape formed by the VO sequence. The mapping g is simply a
shape representation projected onto a Euclidean space. Fig. 5
depicts the state transition graph of a first level THMMs.

6.2.1. The problems assigned to a first level THMM

Four problems are assigned to a first level THMM, they are:

� Probability evaluation: Given a model l and a VO sequence O

with its corresponding UNIF external contour points sequence
XðtÞ ¼ fxðtÞgt ¼ m

t ¼ 1 , the goal is to evaluate how well does l match
O.
� Statistical decoding: In this problem, we attempt to find the

‘‘best’’ hidden state sequence q
 ¼/q
1; q


2; . . . ; q



TS such that:
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q
 ¼ argmaxq½PðO; qjlÞ� that best ‘‘explains’’ the visible obser-
vation sequence O. This problem is similar to problem 2 of a
traditional HMM. Its solution is implemented using Viterbi
algorithm that it is based on the evaluation of the maximum
probability of all sequences ending in state i at time t, dtðiÞ and
the extraction of a partial best path as conducted in dynamic
programming. The Viterbi algorithm is fully described in [2].
� Topological decoding: In this problem, the task consists of

determining the ‘‘correct’’ shape of the UNIF assigned to the VO
sequence O via the noise on its external contour.
� Learning: In this problem, we try to determine the model

parameters l¼ ½p;A;B;T � that maximize PðOjlÞ.

6.3. Second level topological hidden Markov models

We introduce in this section a mathematical description of the

second level topological hidden Markov models that extends the first
level THMMs.

Psychophysical studies [25] show that we can recognize
objects using fragments of outline contour alone. In this context,
a VO sequence O=o1,o2,y, oT is viewed as made of constituents
O1,O2,y,Os. Each Oi is a string of symbols oiAS interrelated in
some way. In other words, each VO sequence O is not only one
sequence in which all symbols are conditionally independent, but
also a sequence that is divided into a series of s strings
Oi ¼ oi1 ; oi2 . . . oiri

(1r irs). The task within the second level
THMMs is threefold: (i) segment an entire VO sequence into s

‘‘meaningful’’ pieces, (ii) determine the shape of each UNIF
assigned to a segment Oi by embedding it in a Euclidean space,
and (iii) compute the joint probability of the entire VO sequence O

with its UNIF sequence.

6.3.1. Optimal segmentation of the entire VO sequence

The goal is to determine a methodology that enables
segmenting a T-element sequence into s ‘‘meaningful’’ segments
(or strings) using a predefined criterion. This problem is known as
the (s,s) segmentation problem. Let Segs(O) be the set of all
segmentations of O into s segments. Therefore, the (s,s) segmenta-
tion problem can be stated as follows: Assume we are given a
sequence O = o1 o2yoT, where oiAS, how can we determine the
best segmentation D
ASegsðOÞ amongst all possible segmenta-
tions of O into s segments? A segmentation DASegsðOÞ is defined
by s+1 segment boundaries 1¼ b1ob2o � � �obsobsþ1 ¼ Tþ1,
generating segments O1, O2,y,Os where: Oi ¼ obi

; . . . ; obiþ 1�1.

The best segmentation D
 is the one that creates homogeneous

segments Oi with respect to some error measure. Depending on
the nature of the data, different error measures can be
investigated. We propose the following error measure: EðOiÞ ¼P

oi AOi
d2ðoi; oiÞ, where oi is the most representative symbol of the

segment Oi and d is a distance. If the data are real valued and
defined in a Euclidean space, therefore the most representative
symbol is the mean and the error measure in this case is simply
the variance. Since there are several possible segmentations
DASegsðOÞ, thus the global error measure is defined as

EðO;DÞ ¼
X

Oi AD

X
oi AOi

d2ðoi; oiÞ: ð16Þ

Finally, the optimal segmentation task consists of finding the
segmentation D
ASegsðOÞ that minimizes EðO;DÞ. Dynamic pro-
gramming approaches is used to solve this problem in a tractable
and efficient manner [26]. However, the optimal solution may not
be unique. There could be more than one segmentation D that
minimize the error measure EðO;DÞ. Our strategy consists of
selecting the one that has the smallest number of segments s.

6.3.2. UNIF formation through unsupervised clustering

So far, we have defined a UNIF as a shape that can unfold after
a stretch (or a deformation) of a VO subsequence. However, we
have not shown how this process can be achieved. The objective
of this section is to unravel the formation of the UNIF entity. The

UNIF’s are built through an unsupervised clustering algorithm applied

to a set of vectors representing shapes. Each cluster gathers the
shapes (formed by the constituents oi’s) that are similar in some
sense. The organization of the symbols oi contributes to the
production of the UNIF Uj. For example, a cloud of points Oi

representing a VO sequence forms a circle or an ellipse Uj with a
certain probability PðUjjOiÞ. This circular (or elliptical) shape is
viewed as a cluster that gathers all round shapes with respect to
some metric distance and a fixed threshold. Therefore, we define
the notion of UNIF’s as follows:

Definition 6.2. By partitioning the set S into a set of clusters.
Each cluster U is a UNIF that describes piecewise the global shape
formed by the entire VO sequence O.

The higher the complexity of the shape formed by the VO
sequence, the higher the number of UNIF’s needed to describe it.
Fig. 6 depicts examples of two objects that are decomposed into
several UNIF’s (or structures).

6.3.3. Mathematical formulation of the second level THMMs

We present the mathematical expression of the second level
THMMs. We also give a definition of this model and the

Fig. 5. The state transition graph of a first level topological hidden Markov model:

The digits 1, 2, 3,y,i represent hidden states. The nodes oi are emitted symbols

that form a UNIF whose shape representation is projected onto a Euclidean space.

Fig. 6. The organization of constituents and their shapes in two different objects

(a) 3D protein fold with a helix and b sheet as UNIF’s and (b) a handwritten

character representing the digit ‘‘three’’ with structure of type a, b, c and d as

UNIF’s.
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parameters involved. Let O¼ O1;O2; . . . ;Os ¼ o11
o12

. . . o1r1
,

o21
o22

. . . o2r2
; . . . ; os1

, os2
; . . . ; osrs

, (where r1 is the number of
observations in subsequence O1 and r2 is the number of
observations in subsequence O2, etc., such that

Pi ¼ s
i ¼ 1 ri ¼ T). Let

U = U1, U2,y,Us be the UNIF sequence assigned to the
subsequences Oi’s, and XðtÞ ¼ X1ðtÞ;X2ðtÞ; . . . ;XsðtÞ be the sequence
of all external contours assigned to the UNIF sequence. The length
of X(t) is equal to m = m1 + m2 + ?+ ms, where mj is the length of
the subcontour Xj (t). Each Oi is mapped to its contour Xj(t) using
the mapping I defined in Section 3. Let X̂ iðtÞ be the series of 3D
points of each Xi(t), and X̂ ðtÞ ¼ fX̂ iðtÞg

i ¼ s
i ¼ 1 be the series of the 3D

points of the entire contour X(t). The probability of the observa-
tion sequence O with its external contour X(t) (defined piecewise)
given a model l can be written as

PðOjlÞ ¼
X

U

P½O; X̂ ðtÞ;Ujl�: ð17Þ

Since the model l is implicitly present during the evaluation of
this joint probability, therefore it is omitted. We first need to
evaluate P½O; X̂ ðtÞ;U�. It is reasonable to assume that the series X̂ ðtÞ

depends only on the observation sequence O. Thus, using Bayes’
formula first and then conditional independence of the fX̂ iðtÞg

i ¼ s
i ¼ 1,

we can write

P½O; X̂ ðtÞ;U� �
Yi ¼ s

i ¼ 1

P½X̂ iðtÞjOi� � PðO;UÞ: ð18Þ

We evaluate each term separately. We first start by computing the
first term of Eq. (18), which is: P½X̂ iðtÞjOi�. Since the vector
NiðtÞ ¼ x̂iðtÞ 	 ziðtÞ, then

P½X̂ iðtÞjOi� ¼
Yt ¼ ri

t ¼ 1

P½NiðtÞ ¼ x̂iðtÞ 	 ziðtÞjOi�

¼
Yt ¼ ri

t ¼ 1

P½NiðtÞ ¼ x̂iðtÞ 	 ziðtÞjox̂iðtÞ�

¼
Yt ¼ ri

t ¼ 1

1

ð2pÞ3=2
jSi;tj

1=2

�exp �
1

2
½NiðtÞ�miðtÞ�

TS�1
i;t ½NiðtÞ�miðtÞ�

� �
�Fi:

The second term of Eq. (18) is computed as follows. For the sake of
simplicity, we assume that Oi depends only on Ui, and the UNIF
probability distribution is a Markov chain of order 1 (illustrated
by Fig. 7). Finally, we can recursively approximate the second
term of Eq. (18):

PðO1; . . . ;Os;U1; . . . ;UsÞ �
Yi ¼ s

i ¼ 1

PðOijUiÞ � PðUijUi�1Þ; ð19Þ

where PðU1jU0Þ � PðU1Þ since the form U0 does not exist. If

PðUijOiÞ � PðOiÞ � PðUijUi�1Þ

PðUiÞ
�Ci; ð20Þ

therefore, by regrouping the expressions of all the terms involved
in Eq. (18), we obtain the final expression of the second level
THMMs:

PðOjlÞ �
X

U1U2 ...Us

Yi ¼ s

i ¼ 1

½Fi� � ½Ci�: ð21Þ

The uncertainty about the shapes of the external contour formed

by the observation sequence O¼ ðO1;O2; . . . ;OsÞ is captured by

the Gaussian noise probability distribution. The UNIF Ui assigned

to Oi is introduced via the term PðUijOiÞ. Besides, the term P(Oi)
of Eq. (21) is viewed as a first level THMMs. Therefore, we can
state:

Definition 6.3. A second level THMM is a sextuple
l¼ ½p;A;B;U;D; T �, where:

� p, the initial hidden state distribution within a constituent Oi,
where pi ¼ Pðq0 ¼ iÞ and 1r irN,

P
ipi ¼ 1.

� A, the hidden state transition probability distribution matrix
within a constituent Oi, A¼ faijg, where aij ¼ Pðqtþ1 ¼ jjqt ¼ iÞ

and 1r i; jrN,
P

jaij ¼ 1.
� B, the emission probability matrix within a constituent Oi,

B¼ fbjðkÞg, in which bjðkÞ ¼ PðokjqjÞ, 1rkrR and 1r jrN,P
kbjðkÞ ¼ 1.

� U is the posterior probability matrix of a UNIF Ui given its
constituent Oi, U ¼ PðUjjOiÞ ¼ uiðjÞ, subject to:

P
juiðjÞ ¼ 1.

� D, the UNIF transition probability matrix, where:

D¼ fdijg ¼ PðUtþ1 ¼ jjUt ¼ iÞ,
P

jdij ¼ 1, 1r i; jrF.

� T , is the noise probability distribution contained in the
representation of the shape Xi(t) formed by the subsequence

Oi, it is written as: P½NiðtÞ ¼ x̂iðtÞ 	 ziðtÞjOi� ¼ 1=ð2pÞ3=2
jSi;tj

1=2 �

exp½�ð1=2Þ½NiðtÞ�miðtÞ�
TS�1

i;t ½NiðtÞ� miðtÞ��.

� N, the number of hidden states in the model. We label the
individual states as 1, 2, y, N, and denote the state at time t

as qt.
� R, the number of points in an external contour Xi(t).
� F, the number of distinct UNIF’s.

Fig. 7 depicts the state transition graph of a second level THMMs.

6.3.4. Problems assigned to a second level THMM

There are five problems that arise in the context of a second
level THMM:

� Probability evaluation: Given a model l¼ ½p;A;B;U;V; T � and a
sequence of observations O¼ ðO1; . . . ;OsÞ, we evaluate how
well does the model l match O. This problem has been
discussed in Section 6.3.3. It can be implemented using the
forward procedure as in the traditional HMMs.
� Statistical decoding: The statistical decoding problem consists

of determining the optimal hidden state sequence
q
 ¼ argmaxq½PðOi; qjlÞ� that best ‘‘explains’’ a constituent Oi.
This process is repeated for each constituent of the entire
sequence O. This task is implemented using Viterbi algorithm.
� Structural decoding: The structural decoding problem

consists of determining the optimal UNIF sequence U
 ¼

/U
1;U


2; . . . ;U



s S such that

U
 ¼ argmax
U

PðO;UjlÞ: ð22Þ

We define

dtðiÞ ¼max
U
½PðO1; . . . ;Ot ;U1; . . . ;Ut ¼ ijlÞ�; ð23Þ

Fig. 7. A state transition graph of a second level THMM. The global shape of the

entire VO sequence is captured piecewise through the UNIF’s Ui extracted from

each first level THMM.
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that is, dtðiÞ is the highest probability along a single path, at
time t, which accounts for the first t strings and ends in form i.
Then, using induction we obtain

dtþ1ðjÞ ¼ max
i
dtðiÞvij

� �
utþ1ðjÞ

PðOtþ1Þ

PðUjÞ
: ð24Þ

Similarly, this latter expression can be computed using Viterbi

algorithm. However, we estimate d in each step through the

UNIF transition probability matrix. For example, a sequence such
as: /round; curved; straight; zigzag . . . convexS can be de-
rived to describe the global shape formed by the VO sequence.
� Topological decoding: In this problem, the task consists of

determining the ‘‘correct’’ shapes of the UNIF’s assigned to the
VO subsequences Oi via the noise embedded in their external
contours Xi(t). In this step, the mean vector miðtÞ and the
covariance matrix Si;t assigned to each Oi are ML estimated as
in the first level THMMs. The UNIF sequence /round;
curved; straight; zigzag . . . convexS is decoded in terms of its
contour vector sequence.

� Learning: The goal in this section is to compute the model
parameters l¼ ½p;A;B;U;V;T � that maximize the likelihood
PðOjlÞ. In order to estimate the posterior probability PðUjjOiÞ, we
used the k-nearest-neighbors method [27]. For any given UNIF Uj,
we estimated uiðjÞ ¼ PðUjjOiÞ as uiðjÞ � kj=k, where kj is the
number of contour representation vectors that belong to the
UNIF Uj (cluster) amongst all possible k-nearest neighbors of the
external contour representation vector assigned to Xi(t). This
estimation requires the definition of ‘‘neighbor’’. If one adopts
the Fourier descriptor technique to represent the shape external
contour, therefore, the similarity distance between two 3D
shapes is computed using the L2 norm between their Fourier
descriptor vectors. In the case of an unseen sequence Ou

that might be encountered during a testing phase, the
probability PðUjjOuÞ will be estimated by PðUjjOiÞ 8j. The VO
sequence Oi is such that the contour Xi(t) of its UNIF is the
‘‘closest’’ to the contour Xu(t) assigned to Ou in the training
set. The k-nearest-neighbors posterior probability estimation
technique obeys the exhaustivity and exclusivity constraint:P

juiðjÞ ¼ 1. This estimation enables to built the entire matrix U .
Since the contour of the entire VO sequence is represented by a
sequence of UNIF’s, therefore we can use the Baum–Welch
optimization technique to estimate the matrix V. The other
parameters, p¼ fpig, A¼ faijg, B¼ fbjðkÞg, were estimated as in
HMMs [2].

It is worth to underscore that the UNIF sequence describes the
structural pattern topologically, piece by piece. Because of the
shape consideration, it becomes possible to differentiate between
low energy state levels of two protein secondary structures such
as ‘‘CompressedHelix’’ and ‘‘ElongatedHelix’’. This difference is
fundamental in proteomics since the folding mode is related to
the energy state level. The following algorithm describes the
different steps involved in a second level THMM.

� Training:
(i) Collect a training set containing VO sequences of

arbitrary sizes
(ii) Break up each VO sequence into segments as explained in

Section 6.3.1
(iii) Determine the UNIF sequence assigned to these segments

through Instantiation
(iv) Compute the shape of these UNIF’s using their external

contour vectors
(v) Cluster these vectors into k clusters labeled Ui (i=1,y,k).
(vi) Extract the noise component in each shape

representation vector using a filter bank.

(vii) Compute the optimal model l
 ¼ ½p
;A
;B
;U
;V
;T 
� for
each class oi (i=1,y,c).

� Testing:
(i) Break up each VO sequence into segments and determine

the UNIF’s assigned to these segments and their contours
For each sequence O of the test set Do

Begin
Compute PðOjliÞ (i=1,y,c),
Select the best model and assign its class oi to

the test sequence O

End
(ii) Compute the accuracy of the second level THMMs using a

re-estimation method.

7. Selected applications

In order to demonstrate the overall significance of the THMM’s
paradigm, we have selected two different applications: (i) hand-
written numeral recognition, and (ii) protein fold recognition. We
have compared the THMM’s approach with some state of the art
classifiers; the experimental results obtained in these two
applications are reported below.

7.1. Application 1: handwritten numeral recognition

In this section, we show how the classification task of
handwritten numerals is conducted using a THMM’s approach.
Usually, a handwritten numerals recognition system includes
three parts: image processing, feature extraction, and classifica-
tion. The image processing phase was skipped since we have used
the MNIST database which is a subset of a larger NIST database.
All digits in the MNIST repository have been size-normalized to fit
in a 20 
 20 pixel box, and centered on a 28 
 28 pixel image. The
training set contains 60,000 digits and the testing set 10,000
digits.

7.1.1. Data collection and UNIF formation

It is well known that the performance of a handwritten
numeral recognition system depends largely on the feature
extraction phase. In this application, a sequence of 2D coordinate

points of the external closed contour of the entire numeral

corresponds to the VO sequence. We used the standard 8-directions
chain code to represent the closed contours of the digits [28]. The
extracted 8-directions features are sequences of integers from 0 to
7. The chain code representation entails a deformation of the
contour 2D points sequence which corresponds to the mapping
f (from the VO sequence to the UNIF sequence) introduced in
Section 3. It is well known that the chain code method has its own
weaknesses. It is not capable of: (i) performing a good corner
detection; (ii) detecting sharp boundary changes, and thus not
capable of capturing structural information. To solve this problem,
we extracted a sequence of local structures that composes the
entire digit contour. Each local structure is a sequence of integers
from 0 to 7 that represents a UNIF. We used an unsupervised
clustering algorithm to extract the local structures automatically
from the chain code sequence of the numeral. This phase

corresponds to the structural decoding of the handwritten numeral.

The first step of the structure extraction is to determine all
numeral strokes. A stroke is separated from another one when a
significant change of a contour direction of a chain code occurs. In
other words, if the difference (which is the minimum value of
clockwise and counterclockwise change) between two successive
chain code directions is no less than a preset threshold, then a
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new stroke is created. An example showing how to separate two
successive strokes is illustrated in Fig. 8.

The chain code of the contour segment in the round corner
rectangle box is ‘‘.556660007.’’. We can see that the biggest chain
code difference is between the ‘‘6’’ and the ‘‘0’’ in the middle. This
difference is minðj6�0j; j8�ð6�0ÞjÞ ¼ 2 which is no less than our
preset threshold value ‘‘2’’. Thus, we consider ‘‘..55666’’ as one
stroke, and ‘‘0007..’’ as another stroke. After having extracted all
strokes, we clustered them using the probabilistic principal
component analysis (PPCA) technique [29] and assigned each
cluster (or UNIF) a label. Finally, each cluster is considered as a
local structure and each stroke has different probabilities
belonging to different clusters. We calculated a ‘‘weighted mean’’
vector xi from the strokes for each local structure Ui using the
following equation:

xi ¼

P
Vk AUi

PðUijVkÞ � VkP
Vk AUi

PðUijVkÞ
; ð25Þ

where Vk is the feature vector of each stroke contained in the local
structure Ui. The weighted mean vector xi represents a signature of
each local structure Ui in terms of its shape: It corresponds to the
mapping g introduced in Section 3. This signature enables to
perform a comparison between several local structures. As
outlined in Section 6.3.4, the topological decoding reveals the shape

of each local structure of the handwritten numeral. This information
is embedded in the feature vector xi which is computed through a
Gaussian probability distribution assigned to the noise in the
chain code representation of each stroke contained in this local
structure. We have used the ML estimation to compute the mean
vector miðtÞ and the covariance matrix Si;t of the Gaussian
probability distribution. A numeral is thus expressed as a

sequence of local structures with their shapes. Table 1 shows
the number of local structures found for all 10 digits.

Because THMMs require the input features to be sequential,
we have chosen a point on the contour as the starting point of the
chain code. The criterion to select the starting point is as follows:
We first choose a point (xcenter, ytop), where xcenter is the center of
the image, and ytop is the top ‘‘y coordinate’’ of the contour point
along the vertical center line. Then we traverse along the contour
counterclockwise until we meet the beginning point of a stroke
for the first time. We consider this beginning point of the stroke as
the starting point of the chain code. Fig. 9 depicts an example of
the starting point.

7.1.2. Training the THMMs

The training of a topological hidden Markov model is an
iterative process that seeks to maximize the probability that each
THMM accounts for the training sample sequences. Since all digits
were size-normalized to fit in a 20 
 20 pixel box, we placed a 4 by
4 mesh on the box. The grid lines of the mesh are evenly set, so
that there are 16 cells in total and each cell covers 5 
 5¼ 25
pixels. The 16 cells correspond to the hidden states as illustrated
in Fig. 10. Thus we have obtained 16 states for each of the 10
THMMs from ‘‘0’’ to ‘‘9’’, respectively. We have used the Forward–
backward algorithm to estimate the matrix A, B, U, and V. While
the Baum–Welch algorithm itself is well-defined, initialization of
the THMMs is much tricky. To initialize A, we set each ai,j to 0 if
cell ia j and they are not neighbors, otherwise we set it to the
value of 1 divided by (the number of neighbors of cell i) + 1. For
example, we set a1;1 ¼ a1;2 ¼ a1;5 ¼ a1;6 ¼

1
4 and a1;jðja1;2;5;6Þ ¼ 0.

The initialization of B is much simpler. We just assign all bj(k)’s
the value 1

8. The matrices U and V were initially empty, which
means they do not have rows and columns before starting the
training. As the training proceeds, rows and columns will emerge
in the matrices.

7.1.3. Classification results

The testing phase is conducted on the MNIST data set. Given a
test sample image x of a numeral, we extracted the chain code
string of its contour. Then we determined the strokes from which
we derived all structures assigned to x. Because a stroke has

Fig. 8. The strokes are separated when a significant change of the chain code

directions occurs.

Table 1
The local structure numbers and their models.

Digits 1 2 3 4 5 6 7 8 9 0

Number of local structures 11 16 17 13 17 15 14 19 14 16

Fig. 9. The criterion for selecting the chain code starting point.
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different probabilities assigned to structures, we used all possible
structures as input to the 10 models. All 10 THMMs were tested
using x as input. We then determined the model l
 that
maximizes PðOjliÞ and assign its numeral class to the input
x. The accuracy was computed as the number of correctly
recognized digit divided by the size of the testing data set. The
error-rate reduction is obtained by

ðerror rate of SHMMsÞ�ðerror rate of THMMsÞ

ðerror rate of SHMMsÞ
100%: ð26Þ

We have compared the THMM’s approach with the SHMMs
classification technique. The SHMM’s approach considers only
local structures of the handwritten numeral without information
about their shapes (topological decoding). In other words, SHMMs
are not enough powerful to discriminate between handwritten
numerals since the shape information is vital in this application
[15]. The training of both classifiers was coded using MATLAB.
Table 2 shows the performance comparison between THMMs and
SHMMs. The error rate E which is 1.5% and the reject rate R of
1.24% confer a small 10E+R3 value of 16.24% to the THMM’s
classifier: It represents a significant improvement.

7.2. Application 2: protein fold recognition

In this section, we show how the second level THMMs can be
applied to solve one of the most challenging problems in
molecular biology known as: the protein 3D-fold recognition. This
problem is stated as follows: Given a primary structure of a protein

(a sequence of amino acids which is the VO sequence), predict its 3D

fold class (amongst 27 selected classes).

7.2.1. Motivation

The primary structure of a protein is its linear sequence (or
linear polymers) of amino acids and the location of any disulfide

bridges. There are 20 amino acids which are: (A, ALA); (C, CYS);
(D, ASP); (E, GLU); (F, PHE); (G, GLY); (H, HIS); (I, ILE); (K, LYS); (M,
MET); (N, ASN); (P, PRO); (Q, GLN); (R, ARG); (S, SER); (T, THR); (V,
VAL); (W, TRP); (L, LEU); (Y, TYR). In biochemistry and structural
biology, secondary structure is the general 3D form of local
segments of biopolymers such as proteins and nucleic acids (DNA/
RNA). It does not, however, describe specific atomic positions in
3D space, which are considered to be tertiary structure. Each
protein can be considered as a tertiary structure—a sequence of
secondary structures folded in a certain way in the 3D space [30].
Fig. 11 illustrates the relationships between the primary,
secondary and tertiary structures of a protein. This folding
process of a protein is a global overview of the protein’s energy
surface [31]. It is a thermodynamically driven process—Proteins
fold by reaching their thermodynamically most stable structure.
However, many local and non-local interactions take part in the
process, and therefore the search space of possible structures
becomes enormous. As the protein databank grows larger, the
proteins classification process and its folding prediction become
slower and more difficult. Computational analysis of biological
data obtained in genome sequencing is essential for the
understanding of cellular functions and the discovery of new
drugs and therapies. Since the functions of proteins may come
from their 3D structures, the method of measuring structural

similarity (or mapping one structure to another) between two

proteins can infer their functional proximity. Sequence–sequence
and sequence–structure comparison play a critical role in
predicting a possible function for new sequences. Sequence
alignment is accurate in detecting relationships between
proteins. However, this method is not efficient when two
proteins are structurally similar, but have no significant
sequence similarity. Protein fold recognition is an important
approach to structure discovery that does not rely on sequence
similarity. It consists of mapping an amino acid sequence of

unknown structure to one of a library of target 3D structures (or

folds). Unraveling the protein 3D structure is one of the many
goals needed to decode the human genome or the genome of any
given pathogen.

7.2.2. Background

Researchers have been devising and applying new methods to
solve this problem and a work of great value has already been
undertaken. Lawrence Hunter applied heuristic Bayesian classifi-
cation to define and enumerate structural motifs present in
protein macromolecular systems [32]. White et al. applied a
nonlinear optimal filtering algorithm to predict a protein’s tertiary
structure [33]. Dubchak and his team proposed a method for
predicting protein folding class based on a global protein chain
description that uses a voting scheme [34]. Maeda et al. proposed
a classification method of protein folds using a structural
transformation of one protein to another [35]. Ding et al. worked
on multi-class protein fold recognition using support vector
machines (SVMs) and neural networks (NNs) [36]. The multi-class
SVM’s approach used by Ding et al. will be compared to the
second level THMM classifier in this paper. Furthermore, Jason
et al. built a protein classification system which depends
significantly on the choice of a ‘‘good’’ representation of the input
sequences of amino acids [37]. Though their work achieved the
state of the art classification performance, their methodology does
not handle unknown and unlabeled data. It is worth to underscore

that the topological interaction between secondary structures has not

been fully exploited in most of the research conducted in this area.
Our goal through the THMMs is to predict the protein fold by
merging the amino acid sequence (sequential information) and
the 3D folding of the secondary structures (shape information).

Fig. 10. Hidden states and their corresponding cells.

Table 2
Comparison of performance between THMMs and SHMMs.

Model Accuracy (%) Reject-rate (%) Error reduction (%)

THMMs 98.5 1.24 (THMMs vs. SHMMs)

SHMMs 96.4 1.98 58.3

3 10E+R is a standard classifier comparison measure used in document

analysis.
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7.2.3. Data collection and UNIF formation

The data set used during our experiment was extracted from
the SCOP (Structural Classification Of Proteins) database. It is
the PDB-40D set developed by the authors of SCOP [38]. This
data set contains 990 protein primary structure sequences. In
this database the entire protein sequence is already segmented
into several subsequences of amino acids assigned to secondary
structures. In other words, there is no need to perform any prior
automatic segmentation task in this particular application. The
data set we have extracted contains fixed format records of 3D

Cartesian coordinates, occupancies and temperature factors for
the atoms composing the polypeptide backbone of the amino
acid molecules of the entire protein primary structure. Fig. 12
(part[A]) and Table 3 display an example of a peptide backbone
and a part of the PDB set, respectively. In this application, each

Oi is a VO subsequence of amino acids and each UNIF Ui is a protein

secondary structure. In other words, each symbol oi of Oi is an
amino acid. Fig. 13 depicts a segmented primary structure

sequence O of the protein 2DKB, and its secondary structure
sequence. The UNIF’s assigned to the subsequences Oi are
formed using the unsupervised clustering algorithm applied to
their external contours Xi(t) representing their shapes. In other
words, the clustering of external contours vectors creates the
secondary structures: This process corresponds to the structural

decoding of the THMMs. Besides, each amino acid oi is assigned
to a set of atoms which are 3D Cartesian coordinates. These 3D
coordinate points allow to capture the shape of the entire
backbone (refer to Fig. 12 (part[B]). Because of the abrupt
changes at any variable locations in the shape of the entire
protein polypeptide backbone, we have adopted the 3D wavelet
transform to optimally represent the external contour of a
subsequence Oi. However, because of the lack of shift invariance

and a poor directional selectivity inherent to the traditional
discrete wavelet transform [39], we have used the Dual-Tree

Complex Wavelet Transform in order to capture the contour of a
subsequence Oi.

Fig. 11. The relationships between the different structures of a protein. In the amino acid molecule (top-right), the chemical groups bound to the central alpha ðaÞ carbon

are highlighted in grey. The R-group represents any of the possible 20 amino acid side chains.

D. Bouchaffra / Pattern Recognition 43 (2010) 2590–2607 2601



Author's personal copy
ARTICLE IN PRESS

7.2.4. Training and testing

We have implemented the unsupervised clustering to partit-
ion the wavelet coefficients vectors (or contour vectors) assigned
to all the different secondary structures (or UNIF’s) contained
in the data set. We have therefore built 16 clusters corresponding
to the different folding modes of the basic four secondary
structures: ‘‘Helix’’, ‘‘Sheet’’, ‘‘Turn’’, and ‘‘Extended’’ from the data
set. In other words, we made a difference between an elongated
‘‘Helix’’ and a compressed ‘‘Helix’’. This structural decoding

phase is important since it is sensitive to the shape differences

of the protein secondary structures. Likewise, the topological decoding

in this application corresponds to the determination of the correct

shape representing each cluster built. Fig. 14 illustrates the major
phases undertaken to create the protein secondary structures.

� (A) Training and testing without cross validation: One of our
goals in the experimental phase is to consistently compare the
THMMs with both the SHMMs and SVM classifiers on the same
data set provided by Ding’s team [36]. Therefore, we have
conducted the training and testing phases based on a data set
that contains 990 proteins in which 696 belong to the 27
largest folds. Ding’s team extracted 605 proteins from the
original data set (in which 311 proteins are part of the 27
largest folds) to train a multi-class SVM classifier based on the
‘‘one versus others’’ (OVO) classification method using a
Gaussian kernel. In this approach, 27 fold classes have been
partitioned into a two-class problem: the first class contains

α

Fig. 12. Part [A] illustrates the planar peculiarity of the peptide bond. The atoms

connected by the black edges represent the peptide backbone (or polypeptide

backbone in the case of the entire protein primary structure). Part [B] depicts the

3D shape of a local backbone. A sequence of these shapes captures the topology of

the entire protein.

Table 3
The PDB SEQRES records describe the sequence of the crystallized polymer.

SEQRES SEQRES y ATOM ATOM ATOM ATOM y

1 2 1 2 9 10

396 396 N CA N CA

MET LEU MET MET PHE PHE

ASP GLY 5 5 6 6

GLU LEU 41.402 40.919 39.627 39.199

ASN ALA 11.897 13.263 14.840 15.440

ILE ASP 15.262 15.600 14.228 12.964

THR LEU 1.00 1.00 1.00 1.00

ALA PHE 48.61 47.70 48.66 45.33

ALA ARG

PRO ALA

ALA ASP

ASP GLU

PRO ARG

ILE PRO

The sequence labels in the PDB ATOM reports the record name, the atom serial number, the atom name, a residue name, a residue number, the ðx; y; zÞ Cartesian

coordinates, the isotropic thermal parameter and the occupancy.

Fig. 13. The 3D structure of a protein (fold) captured by its secondary structure

sequence Uj. A protein 3D fold is viewed as a combination of structural (local

structures) and topological information (shapes).
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Fig. 14. The different phases undertaken to create the set of protein secondary structures. Each amino acid is composed of a certain number of atoms represented by their

3D coordinates (X,Y,Z).

Table 4
Subsets of 27 SCOP protein folds used for classification.

Fold name Fold class # TRS # TES

Alpha Globin-Like 1 13 6

Cytochrome C 3 7 9

DNA-binding-3-helical bundle 4 12 20

4-Helical-up-and-down bundle 7 7 8

4-Helical cytokines 9 9 9

EF-hand 11 7 9

Beta Immunoglobulin-like-beta-sandwich 20 30 44

Cupredoxins 23 9 12

Viral-coat and capsid proteins 26 16 13

Con A-like-lectins/ glucaneses 30 7 6

SH3-like-barrel 31 8 8

OB-fold 32 13 19

Trefoil 33 8 4
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objects in one ‘‘true’’ class, and the ‘‘others’’ class combines all
other classes. A two class classifier is therefore trained for this
two-class problem. This procedure has been repeated for each
of the 27 fold classes. Because their main focus was on the 27
largest folds, therefore they have used 385 proteins out of the
696 largest folds for testing (311 proteins for training and 385
for testing in total) (refer to Table 4 for details). The testing set
of proteins did not participate in the training phase.
Furthermore, since there are 27 protein fold classes in the
data set, therefore we have built 27 second level THMM
models. Each protein primary structure sequence has been
tested on all 27 THMMs. The model who generated the highest
score was the selected fold class assigned to that protein
sequence. The rate of success of the THMMs is represented
by its accuracy (1-error rate). In order to exploit the strengths
of SHMMs and SVM (OVO) simultaneously, we have
combined the results of both classifiers viewed as ‘‘black-
boxes’’. This procedure is justified by the fact that a
combination of classifiers performs usually better than a
single classifier [40]. A multi-classifier system is a powerful

solution to difficult pattern recognition problems involving large

class sets and noisy input. In our experiment, we have adopted
‘‘the Borda Count’’ (BC) strategy to determine the final
classification results. We assumed both SHMMs and SVM
(OVO) to have the same weight in decision making. The Borda
Count for a class is the sum of the number of classes ranked
below it by each classifier. It represents a measure of the
strength of agreement of the classifiers that the input protein
belongs to that class. The combination ranking is given by
arranging the classes so that their BCs are in descending
order. The combination classifier output is the class with the
highest BC.
� (B) Training and testing using cross validation: In order to

measure the power of generalization of the THMMs classifier,
we have also conducted a 5-fold cross validation estimation
technique on the 696 proteins. We divided the 27 largest folds
set containing 696 proteins into five sets, each of which
contains 139 proteins. We then selected one set for testing and
the other 4 sets (556 proteins) for training. We repeated this
procedure 5 times with each time selecting a different set for a
validation data. We have tested the THMM classifier and the
five accuracy results obtained for each fold of the 27 fold
classes are then averaged to produce a single accuracy
estimation for each fold class. A test is deemed ‘‘correct’’ if
the predicted class of the input fold is exactly the true class of
this fold, otherwise it is considered ‘‘incorrect’’.

In order to capture the correlation between classes that is
absent in the SVM (OVO) classifier, we adopted the multi-class
kernel-based vector machines (MKVM) approach proposed in
[41]. We have implemented ‘‘the basic algorithm for learning a
multiclass, kernel-based support vector machine using KKT
(Karush–Kuhn–Tucker) conditions’’ as described in [41]. We
used a Gaussian kernel and set the value of e¼ 0:001. The b
value and the standard deviation s of the kernel function in
this algorithm were both determined using the 5-fold cross
validation scheme on the 696 proteins.

7.2.5. Classification results and analysis

We have compared the THMMs classifier with both the
SHMMs, and the SVM (OVO) classifiers individually as well as
with their combination SHMMs/SVO. In the experiments we have
run, the Gaussian kernel worked far better than the linear and the
polynomial kernels. The results depicted in Table 5 show the
prediction accuracy for every protein fold class of the 27 fold
classes using all classifiers without applying the 5-fold cross
validation estimation technique. The average accuracy has also
been computed for each classifier. These results demonstrate the
superiority in performance of the THMMs over the other
classifiers. In order to confirm that the SHMM average
prediction accuracy is significantly different from the SVM, we
have conducted a 5� 2 CV paired t-test of hypothesis. Dietterich
[42] has studied the properties of 10-fold cross validation
followed by a paired t-test for determining whether there is a
significant difference between the averages of the prediction
accuracy of two classifiers. He found out that such a test suffers
from higher than expected type I error (Prob (reject H0jH0 ¼ true)).
To remove this pitfall, he proposed a new test: the 5� 2-fold cross
validation. In this test, 2-fold cross-validation is executed 5 times
(five replications) resulting in 10 accuracy values. The data are
reshuffled and restratified after each replication. All 10 values are
used for average accuracy estimation in the t-test but only values
from one of the five 2-fold cross validation rounds are used to
estimate the variance. The null hypothesis H0 for the five 2-fold
cross validation paired t-test is that the two prediction accuracy
averages are equal: H0: mSVM ¼ mSHMM , whereas the alternate

hypothesis Ha: mSVM amSHMM .
Let pi

(j) represents the difference between the error rates (1-
precision) of SVM and SHMM classifiers on fold j=1,2 of
replication i=1,y,5. Let

pi ¼
ðp1

i þp2
i Þ

2
; ð27Þ

Table 4 (continued )

Fold name Fold class # TRS # TES

Trypsin-like serine proteases 35 9 4

Lipocalins 39 9 7

Alpha/beta TIm-barrel 46 29 48

FAD-binding-motif 47 11 12

Flavodoxin-Like 48 11 13

NAD-binding Rossmann-fold 51 13 27

P-loop 54 10 12

Thioredoxin-like 57 9 8

Ribonuclease H-like motif 59 10 14

Hydrolases 62 11 7

Periplasmic binding protein-Like 69 11 4

Alpha+Beta Beta-grasp 72 7 8

Ferredoxin-like 87 13 27

Small inhibitors, toxins, lectins,y, 110 12 27

The terms ‘‘Fold class’’, ‘‘#TRS’’ and ‘‘#TES’’ stand for class label, size of the training set and size of the testing set, respectively.
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S2
i ¼ ðp

ð1Þ
i �piÞ

2
þðpð2Þi �piÞ

2; ð28Þ

denote the mean of the difference between the error rates of SVM
and SHMM and the variance estimation, respectively. Therefore,
the two-sided test rule states that the null hypothesis should be
accepted with level of significance a if the following statistics:

pð1Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðs

2
i =5Þ

q 
 t5 ðstudent’s t distribution with 5 degrees of freedomÞ

ð29Þ

belongs to the 100� ð1�aÞ confidence interval. This can be
written as

pð1Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðs

2
i =5Þ

q Að�ta=2;5; ta=2;5Þ: ð30Þ

We have set the level of significance a¼ 0:05, a lookup to the
student distribution table indicates t0:025;5 � 3:365 and hence
provides a confidence interval of (�3.365,3.365). The statistic
value defined in Eq. (29) has been computed for the sample of size
27 classes and found outside the confidence interval which states
that the null hypothesis is rejected and the alternate hypothesis is

therefore accepted. In conclusion, the SHMM classifier precision is
significantly different from the SVM classifier precision.

Moreover, it is important to outline that the features
implemented in [36] were based on statistical information (such
as ‘‘composition’’, ‘‘transition’’, and ‘‘distribution’’) of amino acids.
Therefore, their feature extraction phase did not take into account
the order of the secondary structures found in the whole sequence.
However, in the THMM’s approach, it is the sequence of secondary
structures and their shapes that capture the protein 3D fold. In

conclusion, the second level THMMs tend to consistently model

genomic and proteomic data at the same time. The experiments
have revealed the following: (i) SHMMs appear to perform better

than the SVM when the input has a long protein sequence
composed of the same secondary structures. (ii) SVM is more
appropriate to recognize shorter primary structures composed of
different secondary structures. (iii) The combination of SHMMs
and SVM has reduced this erratic behavior by complementing
both classifiers. This combination has globally improved the
accuracy. (iv) The 3D shape of the protein backbone modeled via
the THMMs is a distinguishing feature that further enhances the
global prediction accuracy.

Likewise, the 5-fold cross validation estimation has shown a
slightly lower recognition prediction accuracy in the average in
the case of the THMMs and the SVM compared to the ‘‘train and
test’’ method (without CV). However, these differences are
deemed not to be very significant. Table 6 depicts the accuracy
of the second level THMMs and the SVM (MKVM) classifiers using
the 5-fold cross validation (CV) estimation technique.

8. Conclusion

We have presented a machine learning paradigm that extends
the traditional HMMs by (i) extracting local structures of a visible
observation sequence, and (ii) embedding the state-transition
graph in a Euclidean space to unravel shape information about
these local structures. Our approach acts on the visible observa-
tion sequence by determining their UNIFs. Therefore, the THMM’s
approach is well-suited to: (i) exploit long-range dependencies,
and (ii) account for metric information associated to the pattern.
THMMs extend several HMMs-based paradigms that are not
adequate to gain an insight into the structural world. The protein
fold mapping application shows that the THMM formalism holds
promise since it has significantly outperformed both the SVM, and
the SHMMs classifiers. The performance obtained in this applica-
tion suggests that different 3D shape representation techniques

Table 5
Prediction accuracy using THMMs (second level), multi-class SVM (OVO), SHMMs, and the combination of SHMMs/SVM (OVO) without applying the 5-fold cross validation

estimation technique.

Fold class SVM (OVO) SHMMs SHMMs/SVM (OVO) THMMs

1 87.5 83.3 87.5 96.2

3 50.9 77.8 88.9 93.2

4 43.7 35.0 50.0 58.3

7 53.5 100.0 100.0 100.0

9 69.8 50.0 77.8 83.9

11 50.0 66.7 66.7 73.3

20 48.6 56.6 59.1 65.5

23 15.3 33.3 33.3 52.3

26 46.8 34.7 61.5 71.0

30 25.0 33.3 33.3 50.0

31 41.9 50.0 75.0 82.2

32 27.4 26.0 42.1 51.3

33 50.0 75.5 50.0 78.1

35 25.0 25.0 50.0 62.2

39 39.3 50.0 71.4 79.3

46 60.5 50.0 60.4 71.0

47 56.9 58.3 66.7 74.0

48 29.5 34.7 38.4 48.0

51 31.2 30.0 48.1 56.2

54 47.2 60.0 60.0 73.1

57 25.0 75.0 50.0 79.2

59 39.3 35.7 35.7 48.4

62 78.6 85.7 85.7 92.0

69 25.0 50.0 100.0 79.0

72 25.0 50.0 75.0 81.4

87 24.5 33.3 44.4 58.0

110 69.3 33.3 51.8 64.4

Average 45.2 51.6 61.6 71.16

D. Bouchaffra / Pattern Recognition 43 (2010) 2590–2607 2605



Author's personal copy
ARTICLE IN PRESS

should be experimented and evaluated. This task is part of our
future investigation. We believe that this embedding of topology
will open a new area in which dynamic Bayesian networks can
exploit more powerful topological features such as homeomorph-
ism, homotopy equivalence and topological invariance.
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Table 6
Prediction accuracy using the second level THMMs and the SVM (MKVM) using a

5-fold cross validation (CV) estimation technique.

Fold class SVM (MKVM + CV) Second Level THMMs + CV

1 87.2 95.3

3 50.2 92.0

4 43.3 59.1

7 57.3 100.0

9 70.8 82.3

11 50.3 74.2

20 53.9 63.3

23 17.1 50.6

26 47.2 73.3

30 25.2 50.5

31 42.2 83.6

32 30.5 50.8

33 48.3 77.5

35 25.9 62.8

39 39.1 78.3

46 66.2 69.6

47 55.1 72.3

48 29.1 46.2

51 32.2 54.3

54 53.3 74.5

57 25.1 80.1

59 43.5 47.2

62 75.1 90.3

69 24.1 80.1

72 27.9 80.2

87 24.5 56.1

110 70.1 64.2

Average 44.98 70.69
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