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Abstract. We introduce in this paper a generalization of the widely used hidden Markov models (HMM’s), which we name
“structural hidden Markov models” (SHMM). Our approach is motivated by the need of modeling complex structures which
are encountered in many natural sequences pertaining to areas such as computational molecular biology, speech/handwriting
recognition and content-based information retrieval. We consider observations as strings that produce the structures derived
by an unsupervised learning process. These observations are related in the sense they all contribute to produce a particular
structure. Four basic problems are assigned to a structural hidden Markov model: (1) probability evaluation, (2) state decoding,
(3) structural decoding, and (4) parameter re-estimation. We have applied our methodology to recognize handwritten numerals.
The results reported in this application show that the structural hidden Markov model outperforms the traditional hidden Markov
model with a 23.9% error-rate reduction.

Keywords: Hidden Markov models, probabilistic principal component analysis, structural information, stochastic process,
handwritten numeral recognition

1. Introduction

Hidden Markov models (HMM’s) is a widely used approach that models stochastic processes and
sequences in several applications. The relevance of HMM’s was first demonstrated in speech processing
and recognition in the late 1980’s [1-3]. Neighbor areas such as signal processing [4], and handwriting
and text recognition [5] have also benefited almost at the same time from these stochastic models. Half
a decade later, HMM’s spread to many other areas such as image processing and computer vision [6],
biosciences [7], control [9], and others. Promising results have been obtained from the use of HMM’s in
several applications in the aforementioned areas. However, the number of problems where HMM’s can
be applied is insignificant compared to all the problems a researcher can encounter. In other words, the
use of HMM’s is rare within the whole spectrum of the scientific community. The main reason behind
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this limitation comes from the fact that HMM’s have a clear conceptual framework and the ability to
learn statistically, but they are unable to account for structural information of the sequence [10,11].
Because the symbols of an input sequence are assumed to be state conditionally independent, therefore,
the hidden Markov models make no use of structure, either topological or conceptual [12].

This lack of structure inherent to standard HMM?’s has drastically limited the recognition and clas-
sification tasks of complex patterns. The reason is that a pattern contains some relational information
from which it is difficult to derive an appropriate feature vector. Therefore, the analytical approaches
which process the patterns only on a quantitative basis but ignore the inter-relationships between the
components of the patterns quite often fails.

To face this challenge, a few number of approaches that attempt to overcome this lack of syntax have
been proposed in the context of HMM’s. Fine et al. [13] introduced the hierarchical hidden Markov
model (HHMM) that is designed to model domains with hierarchical structures. HHMM’s provide
several hierarchical classifiers that are independent in order to infer a global conclusion. Unfortunately,
this inference is too much complicated and takes O(7'%) where T is the length of the sequence, making it
impractical for many domains. Cai and Liu’s approach integrates the statistical and structural information
for unconstrained handwritten numeral recognition. Their method uses macro-states to model pattern
structures [14]. They have incorporated statistical and structural information in two different steps.
However, in their structural modeling, the information is not extracted from the sequence of input data
itself, but obtained via the state position index in the sequence after the pattern is built. Furthermore,
their methodology is application-driven and therefore is very specific. Zhu and Garcia-Frias proposed
two novel generative methods which make use of stochastic context-free grammars [17,22,23] and
HMM'’s respectively to model the end-to-end error profile of radio channels [15]. However, in their
approach, the structure is not learned automatically within a single probabilistic framework. Another
promising approach that can contribute in building structural hidden Markov models is due to Geman’s
work in vision. He introduced compositionality as an ability to construct hierarchical representations of
scenes, whereby constituents are viewed in an infinite variety of relational compositions. Amongst all
possible composition rules that embed syntactical information, statistical criteria such as MDL (Minimum
Description Length) and Gibbs distribution are being used in order to select the optimal interpretation [16].
This approach is a preliminary attempt to merge statistics with syntax but unfortunately, due to the greedy
compositionality process, it is intractable.

We propose in this paper a novel methodology that seeks to analyze and recognize structural com-
ponents within a whole organized pattern. We named this new paradigm structural hidden Markov
model (SHMM). Our approach assumes that the sequence that describes the entire pattern is explained
by a single hidden Markov model. This hidden Markov model is extended to contain structural informa-
tion that are embedded within the pattern. We evaluate the contribution of each component to the entire
pattern. These components are merged together to describe the structure of this pattern. Therefore, the
concept of SHMM is different from the HHMM concept since it does not consider different independent
HHMM’s at different level of the hierarchy.

Our methodolgy is motivated by the fact that a complex system can be naturally viewed as a composition
of distinct parts of an organized pattern. The use of a single HMM that produces the symbols (leaves of
a SHMM) is justified by the fact that these data are of the same type. For example, a protein structure in
the three dimensional space is a composition of structures such as « sheet, & helix, etc. [18], and a digit
number can be viewed as a combination of strokes.

The organization of this paper is as follows: Section 2 introduces the concept of a structural hidden
Markov model. An application of this concept to handwritten numeral recognition is laid out in Section 3.
Finally, the conclusion and the future work are the object of Section 4.
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2. Theconcept of structural HMM

In this section, we introduce a mathematical description of the SHMM concept. In the traditional HM-
M?’s, the visible observations are assumed to be state conditionally independent. Let O = (0102 ... or)
be the observation sequence of length 7" and ¢ = (q192 ... qr) be the state sequence where ¢, is the
initial state. Given a model A, we can write:

PO|X)=> PO.q| ) 1)
all q
P(O,q|A)=PO]q,\) x P(q]|A), )

and using state conditional independence, we obtain:

T
P(O [ q,A) :HP(Ot | qt, A
t=1

However, there are several scenarios where the conditional independence assumption doesn’t hold. For
example, while standard HMM'’s perform well in recognizing amino acids and consequent construction
of proteins from the first level structure of DNA sequences [18,19], they are inadequate for predicting the
secondary structure of a protein. The reason for the inadequacy comes from the fact that the same order
of amino acid sequences have different folding modes in natural circumstances [7]. Therefore, there is a
need to balance the loss incurred by this state conditional independence assumption.

Our idea is that a complex pattern O can be viewed as a sequence of constituents O ; made of strings
of symbols interrelated in some way.! Therefore, each observation sequence O is not only one sequence
in which all observations are conditionally independent, but a sequence that is divided into a series of
m strings O; = (04,04, ... 0;,.)(1 < i < m). The symbols of a string are related in the sense that
they define a local structure S ' of the whole complex pattern. This relationship between symbols helps
circumvent the long range dependency problem inherent to traditional HMM’s. In fact, one of the major
problem of HMM’s is that they have great difficulty in learning to capture long range dependencies in
a sequence [8]. In this paper, the structure are determined using an unsupervised learning algorithm.
The symbols interconnection produces a structure S;. For example, a cloud of points representing a
sequence of observations O; forms a round shape .S; with a certain probability P(S; | O;). Similarly a
sequence of phonemes produces a word with a certain probability depending on the context. The higher
the complexity of a pattern, the higher the number of structures needed to describe this pattern locally.
Furthermore, the statistical information is expressed through the probability distribution of the structural
information sequence that describes the whole pattern. Figure 1 depicts examples of two structural
patterns.

Therefore, if O = (01,09,...,0,) = (01,01, ...01,,02,02, ... 02, 5., 0my,0mys -, Om,, ),
(where 1 is the number of observations in subsequence O and ro is the number of observations in
subsequence Oy, etc) and S = (51, Ss,...,Sn), then the probability of a complex pattern O given a
model X can be written as:

P(O|X) =) _P(O,S|\). ®)
S

! Any complex pattern can be expressed as a sequence of symbols when modifying the resolution level.
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Fig. 1. Two examples of structural pattern: (a) Protein 3D structure, (b) Numeral.

Therefore, we need to evaluate P(O, S | \):

P(O,S | \)=P(O|S,\) x P(S|\) )
:P(Ol,OQ,...,Om | Sl,SQ,...,Sm,)\) XP(Sl,SQ,...,Sm|)\) (5)
~ [[[P(O: | 51,82, Sm, A) x P(Si | Sic1,- -, Sm, M) (6)

=1

We have assumed conditional independence of the O’ s with respect to the structure sequence. We also
assume that a structure .S; depends only on the observation sequence O; and the structure probability
distribution is a Markov chain of order 1. The reason behind this Markovian assumption comes from
cognitive science. In fact, it is well-established that when we perform an object recognition task, our brain
relies partly on local interactions between sub-patterns describing these objects [20]. Local interactions
can also be expressed statistically by the means of Markovian fields using Gibbs distributions [11,21].
However, as pointed out in the introduction, our approach considers exclusively sequential processes that
remains within the context of HMM’s. Therefore it is legitimate to estimate Eq. (6) as:

H[P(Oi | Siy A) x P(Si | Si—1,A\)]. (M
=1
In order to show how the symbols o; are inter-related to form a particular structure, we use Bayes’ rule
in Eq. (7), and obtain:

=1

(8)

The organization of the symbols o; is introduced mainly through the term P(.S; | O;) since the transition
probability P(S; | S;—1) does not involve the inter-relationship of the symbols o;. Besides, the term
P(O; | A) of Eqg. (8) is viewed as a traditional HMM that involves symbols within O;. Thus we can
define a Structural HMM as follows:
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Fig. 2. A graphical representation of a structural hidden Markov model. One single HMM produces the symbols o; of each
subsequence O;.

Definition 2.1. A structural hidden Markov model is a quintuple A\ = (m, A, B, S, D), where:

— 7 is the initial state probability vector,

— Ais the state transition probability matrix,

— B is the state conditional probability matrix of the visible observations,

— S is the posterior probability matrix of a structure given a sequence of observations,
— D is the structure transition probability matrix.

A SHMM is characterized by the following elements:

— N, the number of hidden states in the model. We label the individual states as 1, 2, ..., N, and
denote the state at time ¢ as ¢;.

— M, the number of distinct observations o;.

— , the initial state distribution, 7 = {7;}, where m; = P(q; = iatt =0)and1 <i < N, ) . m = 1.

— A the state transition probability distribution matrix, A = {a;; }, where: a;; = P(q+1 = Jj | ¢t = %),
> jai; =1Vi,wherel<i,j<Nandt=1,...,T.

— B, the state conditional probability matrix of the observations, B= {b;(k) = P (o | ¢;), > bj(k) =
1,wherel<k< Mand1 < j<N.

— F, the number of distinct structures.

— S is the posterior probability matrix of a structure given its corresponding observation sequence, S
= P(S; | O;) = s;(j). For each particular input string O;, we have: . s;(j) = 1. Structures are
obtained from a data set using an unsupervised learning algorithm.

— D, the structure transition probability matrix.

D = {dij}a Wheredij = P(St+1 :] | St = ’L),Zdzj == 1,1 < ’i,j < F.
J
Figure 2 depicts a representation of a structural hidden Markov model.

2.1. Problems assigned to a SHMM
There are four problems that are assigned to a SHMM:

(i) Probability evaluation, (ii) State decoding, (iii) Structural decoding, and (iv) Parameter re-
estimation.
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— Probability evaluation: Given a model A\ and an observation sequence O = (O1,---,0,,), We
evaluate how well does the model A match O. This problem has been discussed in Section 2.

— Statedecoding: In this problem, we attempt to determine the state sequence that “best” explain the
input sequence of observations. This problem is similar to problem 2 of the traditional HMM and
can be solved using Viterbi algorithm as well.

— Structural decoding: This is the most important problem since we attempt to determine the “optimal
structure of the model”.

— Parameter re-estimation: In this problem, we try to optimize the model parameters A\ = (7, A, B,
S, D).

2.1.1. Probability evaluation
The evaluation problem in SHMM consists of evaluating the probability for the model A = (7, A, B,
S, D) to produce the sequence O. From Eqg. (8), this probability can be expressed as:

P(O | )) ZPOSM

X dz 17 i i
~ Z {H Z 7rq1 0 (01)ag, g, bq2 (02) .. qr,—1)ar; bq”- (Ori)]} , 9)

where the superscript 7 indicates that the a?, b*, and 7* come from the local structure S;. However, since
the SHMM concepts assumes that the entire sequence O is produced by a single HMM that has been
extended to contain the matrices S and D, therefore we have only one matrix A and one matrix B for all
the components O;.

2.1.2. State decoding
The state decoding problem consists of determining the optimal state sequence ¢ * = arg max(P(O;, q |
q

A)) that best “explains” the sequence of symbols within O,. It can be computed using Viterbi algorithm
as in traditional HMM’s.

2.1.3. Structural decoding

The structural decoding problem consists of determining the optimal structure sequence S* =<
ST,55,...,Sf > such that: §* = mgXP(O,S | A).

We define:

5t(7’) :mSa‘XP(Ol7027"'7Ot7S17527"'7St :7”)\)

that is, d(¢) is the highest probability along a single path, at time ¢, which accounts for the first ¢ strings
and ends in structure i. Then, by induction we have:

6i+1(j) = [mgx 5t(i)dij} 3t+1(j)%§;)1)- (10)

Similarly, this latter expression can be computed using Viterbi algorithm. However, we estimate §
in each step through the structure transition probability matrix. This optimal sequence of structures
describes the structural pattern piecewise.
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2.1.4. Parameter Re-estimation

Many algorithms have been proposed to re-estimate the parameters for traditional HMM’s. For
example, Petar and his colleagues [24] used “Monte-Carlo Markov Chain” sampling scheme. In the
structural HMM paradigm, we have used a “Forward-backward maximization” algorithm to re-estimate
the parameters contained in the model A\. We used a bottom-up strategy that consists of re-estimating
{m:}, {ai;}, {bj(k)} in afirst phase and then re-estimating {s;(k)} and {d;;} in a second phase. Let’s
define:

— & (u,v) as the probability of being at structure « at time r and structure v at time (r + 1) given the
model X and the observation sequence O. We can write:
P(Q’r‘ =U,qr41 =V, O|)‘)
P(O[X)

&-(u,v) = P(gr = u,gri1 = 0|, 0) = (11)

Using Bayes formula, we can write:

_ P(OlOQ...Or, qr = U | )‘)duvPv(OrJrl)P(OTJFQOTJFB T OT | ar =Y A)
&(U, U) - P(0102 e OT | )\) . (12)

Then we define the following probabilities:

—ay(u) = P(O102...0r,q, = u | N)
= Gr(u) = P(Or410p42...07 | gr = u, A)

P(O,
therefore:
& (usv) = 2r(dusri1 () P(Or1)8r1 (v) (13)

P(0102 PN OT ‘ )\)P(qr_H = U) '
We need to compute the following:

- P(OTH):P(O%H . --0§+1 ‘ )‘):ZP(OT—H | g, \)P(g | A)= Z 716, (01)aq1q2 - - - by, (0k)

all q q1---9T

_P(QTJrl:U):ZP(QT+1:U|Qr:j)

J
— P(O102...07 | A). This term requires 7, A, B, S, D. The parameters 7, A, and B can be
re-estimated as in traditional HMM. In order to re-estimate S and D, we define:

N
() = 3w, 0). (14)
v=1
Then we compute the improved estimates of s, (r) and d,, as:

T-1
Y &)
duv = 7‘:17’ (15)

T-1
7‘;1 o (U)
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Fig. 3. The strokes are separated where the chain code directions change significantly.

Starting point

Fig. 4. The criterion to select the chain code starting point.

T
_1§_ ')’7«(’0)
Sulr) = = (16)
7«; Vr(v)
From Eq. (16), we derive:
8, (v) = 8(r) x P(ngio:)v)’ 17)

We calculate improved &, (u, v), v, (u), dy, and §,(v) repeatedly until some convergence criterion is
achieved.

3. Application: Handwritten numeral recognition

We have applied the concept of SHMM in handwritten numeral recognition. Usually, a handwritten
numerals recognition system includes three parts: image processing, feature extraction, and classification.
The image processing phase was skipped since we have used the MNIST database which is a subset of a
larger NIST database. All the digits in the MNIST repository have been size-normalized to fit in a 20*20
pixel box, and centered in a 28*28 pixel image. The training set contains 60,000 digits and the testing
set 10,000 digits.

3.1. Feature extraction

It is well known that the performance of a handwritten numeral recognition system depends largely on
the feature extraction phase. In our application, we used the standard 8-directions chain code to represent
the closed outer contours of the digits [25]. The extracted features are sequences of integers from 0 to
7. However, the chain code method has its own weaknesses. It is not capable of: (i) performing a good
corner detection; (ii) detecting sharp boundary changes, and thus not capable of capturing structural
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Table 1
The structure numbers and their models
Digits 1 2 3 4 5 6 7 8 9 0

Number of structures 11 16 17 13 17 15 14 19 14 16

=
=
=

=

s}
O

=
=
=

Fig. 5. Hidden states and their corresponding cells.

information. To solve this problem, we assigned a sequence of structures to represent the digit contours.
We used an unsupervised learning algorithm to extract the structures automatically from its chain code
sequence. The first step of the structure extraction is to determine all strokes. The strokes are separated
when a significant change of a contour direction of a chain code occurs. In other words, if the difference
(which is the minimum value of clockwise and counterclockwise change) between two successive chain
code directions is no less than a preset threshold, then a new stroke is created. An example showing how
to separate two successive strokes is illustrated in Fig. 3. The chain code of the contour segment in the
round corner rectangle box is “....556660007....”. We can see that the biggest chain code difference is
between the “6” and “0” in the middle. This difference is min(|6 — 0], |8 — (6 — 0)|) = 2 which is no
less than our preset threshold value “2”. Thus, we consider “....55666” as one stroke, and “0007....” as
another stroke. After we have extracted all strokes, we clustered them using the probabilistic principal
component analysis technique (PPCA) [26] and assigned each cluster a label. Finally, each cluster is
considered as a structure and each stroke has different probabilities belonging to different clusters. We
calculated a “weighted mean” value from the strokes for each structure S'; using the following equation:

o VkESi

. > P(Si|Vi)

VkeSi

(18)

where V}, is the feature vector of each stroke O; in structure .S; coming from the classification of PPCA.
The weighted mean p; represents an approximation of each structure S; by a representative vector. This
vector representation of a structure enables to perform comparison between structures. A numeral is thus
expressed as a composition of stroke structures. Table 1 shows the number of structures found for all 10
digits. Because SHMM requires the input features to be sequential, we have chosen a point on the contour
as the starting point of the chain code. The criterion to select the starting point is as follows: We first
choose a point (zcenterYtop), WHEre xcenier is the center of the image, and v, is the top “y coordinate”
of the contour point along the vertical center line. Then we traverse along the contour counterclockwise
until we meet the beginning point of a stroke for the first time. We consider this beginning point of the
stroke as the starting point of the chain code. Figure 4 depicts an example of the starting point.
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Table 2
Comparison of performance with SHMM and HMM

Model  Accuracy (%) Error-rate (%) Error Reduction (%)
(SHMM vs HMM)

SHMM 96.5 3.5
HMM 95.4 4.6 23.9

3.2. Training the SHMM

The training of a structural hidden Markov model is an iterative process that seeks to maximize the
probability that the SHMM accounts for the training sample sequences. Since all the digits were size-
normalized to fit in a 20*20 pixel box, we placed a 4 by 4 mesh on the box. The grid lines of the mesh
are evenly set, so that there are 16 cells in total and each cell covers 5*5 = 25 pixels. The 16 cells
correspond to the hidden states as illustrated in Fig. 5. Thus we have obtained 16 states for each of the 10
SHMM’s from “0” to “9” respectively. As outlined in Section 2.1.4, We have used the Forward-backward
algorithm to estimate the matrix A, B, S, and D. While the Baum-Welch algorithm itself is well-defined,
initialization of the SHMM is much tricky. To initialize A, we set each a; ; to 0 if cell ¢ # j and they
are not neighbors, otherwise we set it to the value of 1 divided by (the number of neighbors of cell 7) +
1. For example,we setai 1 = a2 = a15 = a16 = i and a; j(j+1,2,56) = 0. The initialization of B is
much simpler. We just assignall b;(k)’s the value % S and D were initialized as empty matrices “empty”
means there is no row and column initially. As the training process is going, we’ll enrich the matrices
by inserting rows and columns. The training process of the SHMM in this application is described using
the following algorithm:

1 Begin:

2 Initialize (7, A, B, S, D).

3 Cs=10. (Cg is aset of structures (clusters) represented by feature vectors)

4 Cop = 0. (Co is a set of strokes (subsequences) represented by feature vectors)

5 Setathreshold value p. Set a convergence criterion 6. z < 0.

6 For Each input image «x in the training set

7 Perform image processing and extract its outer contour “chain code” sequence O.

8  Segment O to a sequence of subsequences as {O;} and extract their feature vectors V;’s. (find all strokes)

9 n, < numberof O; ¢ Co. Insertall O; ¢ Co in Co.

10  Cluster {O;} in Co using PPCA and assign P(S; | O;) where Z P(S; | 0;) =1.
allS;

11 ng 0.

12 For Each structure S;

> P(Si | Vi)Vi

13 o ViS5 . (compute the mean strokes feature vector that represents .S ;)

> P(Si | Vi)

Vi €S;
14 If Cs = 0, Then (if Cs is not empty, insert a new structure)
15 Cg HCsU{Si},nS —ng+ 1.
16 Else
17 §* — arg min ||’ = pll2 and o [l = plo.
S

(find the closest structure to the current one, where p* characterizes S*)
18 If o < p, Then (structure already exists)
19 Combine S; with structure S* to form S” and compute "’ for S”.

(the combination is done by combining the two feature vector clusters that of two structures
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S; and S*, and thus creating a new structure S"'.)

20 Cs «— (Cs \ {S'}) U {S"}. (remove S’ from Cg and insert S”).
21 Else

22 Cs «— CsU{S;},ns — ns+ 1.

23 Endif

24 Endlf

25 EndFor.

26  Add n, rows and ns columns to S with randomly initialized numbers.
27  Add ng rows and ns columns to D with randomly initialized numbers.

28 Repeat

29 z— z+ 1. . . . .

30 Compute 7%, 4%, b, 5% and d? from #7—1, a*~1, b*~1, 5>~ and d*~! using Equations 15 to 17.
3L ar e al g b ) < bR, s () < 55N R), d < di

32 Until Itnja])f (7 —mi ™ af — a;; 03 (k) =037 (k) s5 (k) — s57 (k) df; — di ] <.

(convergence achieved)
33 w7, ai — af, b;(k) — bf(k), s;(k) sj(k), dij «— dZ;. (update 7, A, B, S, D)
34 EndFor.
35 End.

3.3. Classification results

The testing phase is conducted on the MNIST test data set. Given a test sample image « of a numeral,
we extracted the chain code string of its contour. Then we determined the strokes from which we derived
all structures assigned to x. Because a stroke has different probabilities assigned to structures, we used
all possible structures as input to the 10 models. All ten SHMM’s were tested using x as input. We then
determined the model \* that maximizes P(O|\;) and assign its numeral class to the input .

The accuracy was computed as the number of correctly recognized digit divided by the testing data set
size. The error-rate is equal to 1 — accuracy and the error-rate reduction is obtained by:

(error rate of HMM) — (error rate of SHMM)
(error rate of HMM)

We have compared the SHMM approach with the Hidden Markov Model (HMM) classification
technique. The training of both of them was coded using MATLAB. Table 2 shows the performance
comparison between SHMM and HMM. The error-reduction of SHMM vs.

HMM is 23.9% which is a significant improvement.

100%. (19)

4. Conclusion and future work

We have presented a novel mathematical paradigm that extends the traditional HMM in order to
capture and model structural information present in the data. This work is an extension and a complete
version of the model introduced in [27]. SHMM’s generalize HMM'’s and therefore provide a partial
answer to three fundamental problems that arise in complex sequence modeling: (i) SHMM’s are
capable to model structural and statistical information within a single probabilistic learning scheme,
while maintaining a computational tractability. (ii) SHMM'’s correlate two consecutive structures, thus
reducing the state conditional independence effect in traditional HMM’s. (iii) SHMM'’s are very well-
adapted to sequences of patterns of the same type, therefore they maintain a low computational cost. The
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reason is explained by the fact that the structures are produced by subsequences of symbols generated by
a single HMM. However, because the symbols of subsequences are emanating from a single Markovian
process, SHMM’s lack the ability to handle statistical inhomogeneities relevant in applications involving
different modalities. Experimental results show that the concept of structural HMM is promising since
it has outperformed the HMM concept on a standard pattern recognition task.

Our future work is twofold:

— compare the modeling power of SHMMs with that of maximum entropy models or conditional

random fields,
investigate the SHMM concept where observations are continuous,

— extend the SHMM concept to a factorial SHMM so that the structures can be explained by multiple

processes (or multiple causes) rather than by a single one.
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