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Abstract 

 
     One of the major limitations of HMM-based models 
is the inability to cope with topology: When applied to 
a visible observation (VO) sequence, HMM-based 
techniques have difficulty predicting the n-dimensional 
shape formed by the symbols of the VO sequence. To 
fulfill this need, we propose a novel paradigm named 
“topological hidden Markov models” (THMM’s) that 
classifies VO sequences by embedding the nodes of an 
HMM state transition graph in a Euclidean space. We 
have applied the concept of THMM’s to: (i) predict the 
ASCII class assigned to a handwritten numeral, and 
(ii) map a protein primary structure to its 3D fold. The 
results show that the concept of second level THMM’s 
outperforms the SHMM’s and the SVM classifiers. 
 
1. Introduction 
 
     The real milestone of the hidden Markov models 
(HMM’s) occurred when applied to speech recognition 
in the late 1980’s [8]. Signal processing [4], and 
document analysis [9] have also exploited the HMM´s 
resources. Half a decade later, HMM’s spread to many 
other areas such as image processing, computer vision 
[7], and biosciences [1].  
     However, the use of HMM’s remains scarce. The 
main reason behind this limitation is explained by the 
fact that HMM’s are unable to: (i) account for long 
range dependencies which unfold structural 
information, and (ii) capture topological features [6] 
such as the shape formed by the visible observation 
(VO) sequence. Because the traditional HMM’s 
modeling is based on the hidden state conditional 
independence assumption of the VO sequence, 
therefore, HMM’s make no use of structure. 
Furthermore, the fact that the HMM’s state transition 
graph is not embedded in a Euclidean space, therefore 
HMM’s make no use of topology. This lack of 
structure and topology inherent to HMM’s has 
drastically limited object recognition. To overcome 
this problem, a few numbers of approaches have been 
proposed. The hierarchical HMM’s (HHMM’s) 
introduced in [5] are capable to model complex multi-

scale structure which appears in many natural 
sequences. The structural HMM’s (SHMM’s) 
introduced in [3] offer a methodology that 
automatically identifies the different constituents called 
“local structures”. Nevertheless, this generalization of 
HMM’s to capture local structures did not address the 
shape modeling problem of the VO sequence. The 
embedding of topological features assigned to local 
structures within HMM’s has rarely been a focus in the 
machine learning community.  
    We propose a novel machine learning paradigm that 
embeds the nodes of an HMM state transition graph in 
a Euclidean space. This new approach entitled 
topological hidden Markov models (THMM’s) extends 
the traditional HMM’s by: (i) modeling the local 
structures of the entire VO sequence and (ii) extracting 
their shapes. There are many applications where 
THMM’s can be applied. A first one would be in 
speech recognition where the pitch contour of some 
speech units (phonemes, syllables) groupings can be 
extracted to provide complementary information about 
the uttered phrase. The fusion of a locale and a global 
analysis of the signal will enhance speech recognition. 
A second application would be to classify celestial 
objects based on morphological features. It is well 
known that the ages of galaxies are explained in part 
by the shape formed by their constituents (aggregates 
of stars, gas and dust). Galaxy classification will 
leapfrog our understanding about the origin of the 
universe. Section 2 clarifies the notion of VO 
sequence. Section 3 depicts the topological mapping 
between the VO sequence and the shape it forms. 
Section 4 introduces the THMM’s concept. Two 
applications are presented in Section 5. The conclusion 
is laid in Section 6. 
 
2. The Visible Observation Sequence 
 
     We define a visible observation (VO) sequence as 
an incoming flow of symbols without a visible 
structure. However, we define a unit of information 
(UNIF) as a shape formed by a group of symbols of a 
VO sequence. For example, a cloud of points 
representing a VO sequence forms a circle viewed as 
UNIF. Not all VO subsequences constitute a UNIF; 
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only those disclosing structural constituents that 
exhibit this pattern. We introduce some applications 
that are intended to clarify the notions of VO and 
UNIF sequence. A first one consists of classifying the 
structure of minerals based on the topology of the 
bonds that link the atoms in the crystal. For example, 
the butane gas linear formula “CHHHCHHCHHC-
HHH” represents a VO sequence. However, the same 
formula can be written in a more informative way as a 
sequence of UNIF’s: “CH3CH2CH2CH3”. A UNIF in 
the butane gas molecule is the shape associated to 
either the subsequence “CH3” or “CH2” (see figure 1). 
A second application aims to map handwritten word 
sequences onto their ASCII representations. A 
handwritten word sequence (or script) such as “The 
quick brown fox” is viewed as a sequence of pixels. 
Each isolated character can be categorized as one of 
the 5 classes “Ascender” (A), “Descender” (D), 
“Median” (M), “Both Ascender-Descender” (B), and 
“Space” (S). Since the first handwritten character of 
this script corresponding to the letter “T” is moving 
upward, therefore it is depicted as “A”. The second 
handwritten character assigned to the letter “h” is also 
perceived as “A”, whereas the third character assigned 
to “e” is depicted as “M” since it remains in the median 
line of the handwritten script. One can finally represent 
the script “The quick brown fox” as the VO 
sequence “AAMSDMMMASAM-MMMSAMM”. 
However, it is worth to underscore that a particular 
“deformation” of a group of symbols (composed of A, 
M, D) produces a handwritten word with a shape. 
Because a word has a potential to convey a meaning, it 
represents a UNIF. A shape of a handwritten word can 
be extracted using the “pixel histogram” method 
(horizontal/vertical scan). 
 
3. Topological Mapping: Projection Onto 
    a Euclidean Space 
 
     The thrust is to determine a mapping between a VO 
sequence and the contour of its UNIF. We assume that 
the VO sequence selected possesses a “meaningful” 
structure. To do so, we first map through a function f 
the VO sequence to its UNIF: this mapping is called a 
“Sequence Deformation” since the VO segment has 
been deformed to form a UNIF. We then, map through 
a function g the UNIF to its shape using a contour 
representation technique. A Fourier or a Wavelet 
coefficient vector [a0,a1,…,aj]T describing the external 
contour is computed in this phase. This mapping is 
called a “Shape Representation”. The composite 
function (g°f) relates the VO sequence O = o1,o2,…,oT 
to its shape vector defined in an Euclidean space. This 

mapping allows the traditional HMM to be ingrained in 
a Euclidean space. 
 
4. Topological Hidden Markov Models 
 
     The goal of the THMM’s is to map a VO sequence 
into one class of a finite set of classes. To achieve this 
goal, we first need to extract the UNIF’s from the VO 
sequence and capture their external contours. 

 
Figure 1. Butane molecule: (a) VO sequence, (b) 

UNIF sequence, and (c) UNIF shapes. 
 
4.1. UNIF Shape Representation 
 
      Shapes of UNIF’s are captured by their external 
contours. A contour is viewed as a discrete signal that 
consists of low-frequency and high-frequency contents. 
The low-frequency content is the most important part 
of the signal, since it provides the signal with its 
identity: This part is known as the pure signal. 
However, the high-frequency signal conveys flavor or 
nuance: This part is associated with noise. The thrust 
behind the concept of THMM’s is to express the 
probability distribution assigned to the pure signal as a 
function of the Gaussian distribution assigned to the 
signal noise. Let O = o1,o2,…,oT be a VO sequence of 
length T made of symbols oi. Let X(t)= {x(t)} 
(t=1,…,m) be the closed contour representation of 
length m that captures the shape of its UNIF. Each 
point of this contour is designated by x(t) = [x1(t), 
x2(t),…,xn(t)]T . Our goal is to extract the noisy part of 
a signal during the shape analysis of the object. 
Whatever shape representation technique might be 
adopted, one can coarsely approximate the original 
signal x(t) by decomposing it into a sum of a pure 
signal ζ(t) and a noisy signal N(t): x(t) = ζ(t) ⊕ N(t). 
 
4.2. First Level THMM’s 
 
    Given a model λ, the VO sequence O, its UNIF 
contour sequence X(t)= {x(t)} (t=1,…,m); evaluate the 
match between λ¸ and this VO sequence O by 
computing P(O|λ). If q stands for the hidden state 
sequence assigned to O, then:  
P(O|λ) =ΣqP[O,X(t),q|λ]. Since each noise point on a 
contour depends only on its symbol ok, therefore: 
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where: ox(t) are the k symbols of the VO sequence such 
that f(o) ⊃ x(t), and N(t) is a multivariate Gaussian 
distribution assigned to the contour noise. 

 
Figure 2. The state transition graph of a 

first level topological HMM. 
 
Definition 4.1. A first level THMM is a quadruple λ = 
[π,A,B,T], where: π ={πi}=P(q0=ei) is the initial 
hidden state probability vector, A={aij}=P(qt+1= j|qt= 
i) is the hidden state transition probability matrix, B = 
{bj(k)}=P(ok at time t|qt=ej) is the emission probability 
matrix, T = P[N(t) = x(t) – ζ(t) | ox(t)] is the Gaussian 
distribution of the noise produced by the k contour 
points x(t). Figure 2 depicts its state transition graph. 
 
4.2.1. Problems Assigned to a First Level THMM. 
(i) Probability Evaluation: Given a model λ and a 
VO sequence O with its corresponding UNIF external 
contour point sequence X(t)= {x(t)} (t=1,…,m), the 
goal is to evaluate how well does λ match O.  
(ii) Statistical Decoding: Find the best hidden state 
sequence that best “explains” the VO sequence.  
(iii) Topological Decoding: Determine the “correct” 
shape of the UNIF assigned to the VO sequence O via 
the noise evaluation of its external contour.  
(iv) Learning: Estimate the model parameters  
λ = [π,A,B,T] that maximize P(O|λ). 
 

4.3. Second Level Topological HMM’s 
 
    Psychophysical studies [2] have shown that humans 
can recognize objects using fragments of outline 
contour alone. In this context, a VO sequence O = o1, 
o2,…,oT is viewed as constituents O1,O2,…,Os. Each Oi 
is a string of symbols oi ∈ Σ interrelated in some way. 

The tasks within the second level THMM’s are: (i) 
segment an entire VO sequence into s “meaningful” 
pieces, (ii) determine the shape of each UNIF assigned 
to a segment Oi by embedding it in a Euclidean space, 
and (iii) compute the probability of the entire VO 
sequence for a classification purpose. 
 
4.3.1. UNIF Formation. The objective is to unravel 
the formation of the UNIF entity. UNIF’s are built 
through a relation of equivalence defined on a set of 
vectors S representing shapes. Each class of 
equivalence is a UNIF that contains shapes whose 
external contours are similar with respect to some 
metric distance. Each UNIF Ui describes piecewise the 
global shape formed by the entire VO sequence. 
Through this partitioning operated on contours, 
discrimination of shapes will be achieved. 
 
4.3.2. Formulation of the Second Level THMM’s. 
Let U = U1,…,Us be the UNIF sequence assigned to 
the VO sequence O = O1,…,Os, and X(t) = {Xi(t)} 
(i=1,…,s) be the sequence of all contours assigned to 
the UNIF sequence. The probability of the VO 
sequence O with its contour X(t) given a model λ is: 
P(O | λ) =  ΣU P[O,X(t),U | λ]. However, if: 
P[Xi(t) | Oi] = Πt=1,…,ri P [Ni(t) | Oi] = φi and if  

, then: 

 
Definition 4.2. A second level THMM extends the first 
level THMM by incorporating the posterior probability 
matrix U of a UNIF Ui given its constituent Oi and the 
UNIF transition matrix D. It is therefore a sextuple  
λ = [π,A,B,U,D,T ]. 
 
4.3.3. Problems Assigned to a Second Level THMM. 
We add to the first level THMM problems the 
Structural Decoding which determines the optimal 
UNIF sequence U* =< U1*,U2*,…,Us* > such that:  
U*= argmaxU P(O,U | λ). For example, a sequence 
such as: <round, straight,...,convex> is derived to 
describe the global shape formed by the VO sequence. 
However, the Topological Decoding Computes the 
“correct” shapes of the UNIF’s assigned to the VO 
sequences Oi’s. The sequence <round, 
straight,...,convex> is decoded in terms of its contour 
vector sequence. 
 
5. Selected Applications 
 
     To demonstrate the significance of the THMM’s, 
we have selected two applications: (i) handwritten 
numeral recognition, and (ii) protein fold recognition. 
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5.1. Handwritten Numeral Recognition 
 
     Objective: Map a handwritten numeral to one of 
the 10 ASCII digits. A VO sequence is a sequence of 
2D coordinate points of the external contour of the 
numeral. A UNIF is a stroke (segment) assigned to a 
VO subsequence. A UNIF shape is a sequence from 8-
directions chain code symbols. We compared the 
THMM’s approach with the SHMM’s classification 
technique. The training (60,000 digits) and testing 
(10,000 digits) were conducted on the MNIST 
database. We have obtained 98.38% (96.81%) 
recognition accuracy from THMM’s and (SHMM’s) 
classifiers with a rejection rate of about 1.24% and 
(1.98%), respectively. 

Fold SVM SHMM Comb THMM 
4 43.7 35.0 50.0 58.3 
9 69.8 50.0 77.8 83.9 

11 50.0 66.7 66.7 73.3 
26 46.8 34.7 61.5 71.0 
30 25.0 33.3 33.3 50.0 
33 50.0 75.5 50.0 78.1 
51 31.2 30.0 48.1 56.2 
… … … … … 

Mean 45.2 51.6 61.6 71.2 
Table 1. Accuracy (%) of THMM, SVM, SHMM, 
and combination of SHMM/SVM (Comb) on some 
protein fold classes λ i’s. 
 

Models Improvement (%) 
(Comb-SVM)/SVM 36.2 

(Comb-SHMM)/SHMM 19.3 
(THMM-SVM)/SVM 57.4 

(THMM-SHMM)/SHMM 37.9 
(THMM-Comb)/Comb 15.5 

Table 2. Relative improvements among classifiers. 
 
5.2. Protein Fold Recognition 
 
     Objective: Map an amino acid sequence to one of 
the 27 protein folds. A VO sequence is a linear 
sequence of amino acids. A UNIF is a protein 
secondary structure (e.g., α-Helix, β-Sheet, etc.). A 
UNIF shape is captured using a “Dual-Tree Complex 
Wavelet” Transform. We extracted 16 UNIF’s using a 
partition in classes of equivalence. We compared the 
THMM’s approach with other classifiers. The training 
(605 proteins) and testing (385 proteins) were 
conducted on the SCOP database. The results depicted 
by Table 1 show the superiority in performance of the 
THMM’s over other classifiers. The relative 
improvements are illustrated by Table 2. 

 
6. Conclusion 
 
     We have presented a novel machine learning 
paradigm that embeds the nodes of HMM-based 
models in a Euclidean space. Our approach 
decomposes the VO sequence into segments in order to 
unravel their UNIF’s. The UNIF’s are generated via a 
partition of their shapes into classes of equivalence. 
Therefore, the THMM approach is well-suited to: (i) 
exploit long-range dependencies, and (ii) account for 
metric information related to the object depicted by the 
VO sequence. THMM’s extend several HMM’s based 
paradigms that are not adequate to provide an insight 
into the structural world. Results show that the 
THMM’s concept has significantly outperformed both 
the SVM, and the SHMM’s classifiers. We believe that 
this embedment of topology within the realm of 
HMM’s will open a new area in which dynamic 
Bayesian networks can exploit more powerful 
topological features. 
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