
 



 

 

 

 

  



 

Abstract 
 
One of the major restrictions of dynamic Bayesian 

networks (DBNs) is their inability to account for 

topological features such as shape descriptors, 

homeomorphy, homotopy, and invariance. The main 

reason for this shortcoming is explained by the fact that 

even if dynamic Bayesian networks encode statistical 
relationships; they are not embedded in a Euclidean space 

where mathematical structures abound. The goal is to 

embed DBNs into a Euclidean space such that these 

topological features can be exploited. This extension of 

DBNs to topological DBNs (TDBNs) leapfrogs the task of 

pattern recognition and machine learning by not only 

classifying objects but revealing how they are related 

topologically. We have applied the TDBN formalism to 

facial aging for person identification. Preliminary results 

reveal that the TDBNs outperform the traditional DBN 

with an accuracy margin of 8% in average. 

1. Introduction 

One of the most compelling challenges consists of 

automatically producing models that are capable to, not 
only predict the category of a single object, but to grasp 

topological1 relationships between objects as well. 

Devising machine learning paradigms that compass 

statistical and topological associations between objects 

will have a profound impact on the way computers 

perceive and process objects. Dynamic Bayesian 

Networks (DBNs) [1,2] that fully explain the traditional 

hidden Markov models (HMMs) have difficulty modeling 

continuous structures (surfaces) that are subject to local 

deformations of their constituents. For example, HMM-

based models [3,4,5,6] are not inherently suitable to 

identify the same human face after it undergoes some 
slight continuous transformations due to aging. Even if 

this identification task could somehow be performed at a 

 
1
 From topology: the study of mathematical properties of geometric 

figures that remain unchanged even when they are distorted, so long as 

no surfaces are torn, as in the case of a Möbius strip. 

feature level, it would be more complicated. Therefore, it 

is necessary to project a DBN in a Euclidean vector space 

in order to address this issue. One of the ultimate missions 

of this research is to answer the following questions: How 

object A can be deformed in order to obtain object B and 

conversely? For example, how can one predict how facial 

aging develops? And what are the essential facial regions 

that age faster than others during aging process? For 

example, the high school photograph of “John” at the age 

of fifteen, and his photograph at the age of fifty five 

should be assigned the same class during a face 

identification task. Some of the HMM’s extensions such 
as constrained [7], and situated space [8] represent an 

attempt to capture structural information by assigning each 

hidden state a spatial region of a fictitious topology space 

where a neighborhood between states is defined. However, 

the objective of these models is not to provide natural 

Euclidean space embeddings that allow examining 

topological relationships between objects.  

The main reason behind the limitation of many 

traditional machine learning formalisms can be explained 

as follows: although DBNs encode probabilistic or causal 

relationships among variables of interest, they are not 
embedded in a Euclidean space that preserves network 

connectivity and exhibits topological properties. DBNs 

need to be ingrained with a power of merging topological 

properties (such as homeomorphy, homotopy or 

invariance) with probabilistic data.  

The branch of topology [9] is fundamental should one 

needs to understand how objects evolve and whether they 

are related through some criteria such as “having the same 

roots (or ancestors)”. Unraveling both statistical and 

topological information within the standard DBNs 

represents a major challenge to the pattern recognition 

community. The inability to capture this vital information 
has drastically limited the performance of other 

neighboring areas such as content-based image/video 

retrieval, signal/image processing and the area of 

computer vision and robotics in general. Autonomous 

robots that are capable to relate objects via a fusion of 

statistics and topology will exhibit a more powerful 

cognitive skill. There are many other challenges that stem 

from areas such as: proteomics, and galaxy formation and 
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evolution that are still to be faced. For example, genes 

homology which consists of determining sequences, either 

DNA or protein that shares a common evolutionary origin 

represents a crucial achievement in genetics and molecular 

biology. Likewise, the search of protein 3D folds that are 

similar topologically is vital in the area of proteomics, 
since structural similarity is correlated with functional 

similarity. We believe that topology (that grasps structural 

interconnections) and statistics (that predicts future 

outcomes based on past experiences) when merged 

together will play a vital role in the search of solutions. 

We introduce a novel formalism whose goal is to embed 

the vertices of dynamic Bayesian networks into a 

Euclidean space so that topological features can be 

incorporated within a single probabilistic framework. The 

notion of “topological hidden Markov models” (THMMs) 

which extends the traditional HMM formalism will 

naturally unfold as a particular DBN’s embedding 
endowed with topological features. 

3. Embedding a Network  in a Euclidean 

Space: Topological Network 

The goal is to embed data represented by a network (or 

a DBN) into a low dimensional Euclidean space. But first, 

let’s define the context of the word “embedding”: 

Definition 1.  If N = (V,E,d) where V is a set of vertices, 

E a set of edges and d a distance measure expressing 

weights between two vertices, therefore an embedding of a 

network on a Euclidean space  (or a surface: compact, 

connected 2-manifold) is a representation of N on  in 

which vertices of V are mapped to points of  and directed 
edges of E are mapped to simple arcs such that: 

 

 The endpoints of the arc mapped to a directed edge e 

are the points of  associated to the end vertices of e. 

 No arcs contain points associated with other vertices. 

 Two arcs never cross each other at a point which is 

interior to either of the arcs.  

 

The purpose of a network embedding is to represent each 

vertex of the network as a low-dimensional vector that 

preserves similarities between the vertex pairs. The 

similarity is measured by a network similarity matrix that 

expresses certain graphical properties of the data set. Our 

objective is to: (i) introduce through this embedding, the 
concept of “topological network” (TN) (or “topological 

dynamic Bayesian network” (TDBN) if the network is a 

DBN) and (ii) explore its benefits among practitioners via 

a selected application. 

3.1. Visible Observation Sequence and its Model 

We define a visible observation (VO) sequence as a 

flow of symbols which represents either: (i) temporal data 

(times series), generated by some causal process; and (ii) 

sequential data (such as bio-sequences), where the 

generating mechanism of this sequence is unknown. 

Furthermore, it is often the case that the generating 

mechanism of the symbols forming a VO sequence will be 

explained by different analytical models (made of the 
vertices of the entire VO sequence and some latent 

variables that explain the VO sequence). For example, the 

same VO sequence O = o1,o2,…,oT can be represented by 

an autoregressive model or a semi-factorial HMM or a 

semi-HMM with mixtures or simply a standard HMM. 

These three models depict particular networks. The 

selection of a suitable “VO sequence model” is executed 

by the model designer with the help of the expert in the 

area of application.   

3.2. Determining the Pivot Vertices of a Network 

Because a VO sequence model is a network and 

therefore has a limited mathematical structure, our mission 

is to build a TN which depicts the set of points created by 

embedding the vertices of the VO sequence model 

(network) in an m-dimensional Euclidean space. There 

exist many algorithms in the literature that perform graph-

embedding [10,11]; however, a very few have been 

dedicated to network embedding. Our approach consists of 

selecting a set P of m “pivot” vertices (P ={v1,v2,…,vm}) 

that “best” represent the dimensions (basis) of the 

Euclidean vector space. The set P is constructed by first 
conducting a topological sort (TS) on the vertices of the 

network by edge. The TS procedure orders the vertices 

such that no incoming edges are first and vertices with 

only incoming edges are last. Therefore, the set formed by 

the first vertices produced by TS can be viewed as a 

generator set of the network. Since we draw an analogy 

between a generator set and a basis of a vector space, 

therefore the first vertices produced by TS are considered 

to be the axis of a Euclidean vector space. We have 

selected the first m vertices (m<< |V|) produced by TS as 

forming a basis of a 3-dimensional vector space (m=3). 
The notion of “shortest-distance” (sd) in a general 

weighted directed acyclic graph (DAG) corresponds to the 

“longer distance” (ld) in the case where the network is a 

DBN, since a DBN holds conditional probability values 

rather than weights. Our approach to network embedding 

is general but is customized adequately (by transforming 

sd into ld) when weights between two vertices are 

conditional probability values. We denote by dN(vi,u) the 

shortest-distance to any vertex u of the network from a 

source pivot vertex vi. Each vertex u is mapped to an m-

dimensional vector Xu= [x1(u), x2(u),…,xm(u)]T, where: 

xi(u) = dN(vi,u), (i=1,…,m). It is imperative that this 
drawing (or embedding) should exhibit the distance 

preserving embedding property: (i) two vertices u and v 

that are closely related in the network N (dN(v,u)  ) 



 
 

should be mapped to two vectors Xu and Xv whose 

Euclidean distance d(Xu,Xv) is less than dN(u,v) in . (ii) 
Conversely, two vertices that are unrelated (or non-

adjacent) in the network should be mapped to two vectors 

that are far apart in . Practically, the dimension of m is 
reduced to m=3 to avoid the curse of dimensionality and 

to visualize the network layout using Principal 

Components Analysis (PCA), Nonlinear Components 

Analysis (NLCA) or Independent Component Analysis 
(ICA) [12]. The entire embedding process is expressed as: 

 

1) Conduct a topological sort on the 
vertices by edge such that vertices 

with no incoming edges are first and 

vertices with only incoming edges are 

last,  

2) Select the first m vertices p1…pm 
produced by the topological sort as 

pivot and set S={p1,p2,…pm} 

3) for each vertex s of S do { 
4)  assign an infinite shortest-distance 
    to every vertex (sd(v)=∞ if v ≠s) 

    and a zero shortest-distance to the 

    source s(sd(s)=0) 

5)  for each vertex v in sorted order 
  do{ 

6)   for each outgoing edge e(v,u) do{ 
7)    if(sd(v) + weight(e)) < sd(u)then 
      {sd(u) = sd(v) + weight(e); 

       u = Predecessor(v).}}}} 

8) Build the set of points Xu for every 
vertex u of the network.   

 
The set of points Xu formed through this embedding 

process constitutes the topological network.  
 

Illustration on an arbitrary network N: 
 

 
 

The topological sorting on the vertices by edge 

provides:[7, 5, 3, 11, 8, 10, 9, 2]. We then select the first 

m (m=3) vertices of the sorting to be the set of pivot 

vertices, S = {7, 5, 3}. Each vertex u of the network is 

converted to a 3D-point Xu=[dN(7,u), dN(5,u),dN(3,u)]T
. 

This computation provides the 3D-points: 
 

vertex 2: [0.6, 0.4, 0]T; vertex 3: [0, 0, 0]T; vertex 5: [0, 0, 0]T; 

vertex 7: [0, 0, 0]T; vertex 8: [0.3, 0, 0.4]T; vertex 9: [1.1, 0.9, 
1.2]T; vertex 10: [0.9, 0.7, 0.6]T;  vertex 11: [0.4, 0.2, 0]T. 

Figure 1 sketches the points assigned to all vertices in a 3- 

dimension vector space. 

3.3. Topological Mapping: Projection onto a    

  Euclidean Space 

We focus now on a TDBN which is a particular 

topological network. The distances between points in the 

3D Euclidean space are computed on the basis of: (i) the 

conditional probability values between pairs of vertices of 

a DBN; and (ii) the notion of “longest-distance path” from 

a source vertex to any other vertex of a DBN. Since a 

TDBN is defined in a discrete set of a Euclidean space, 

therefore it has is mapped to a continuous set where 

metrics, homeomorphism, homotopy, as well as invariance 

properties can be exploited. Once the continuous set 

assigned to a TDBN is built, our objective is to assign it a 
set of topological features. This is expressed as follows: 

We first map the VO sequence to its model: This 

mapping is called “VO Sequence Modeling” (function f). 

We then embed (or draw) the VO sequence model in a 

Euclidean vector space to obtain a TDBN (set of discrete 

points X): This mapping is called a “VO Sequence Model 

Embedding” (function g). We map the TDBN set to its 

continuous set: “TDBN Continuous Representation” 

(function h), and finally derive topological features from 

the TDBN continuous set:  “TDBN Topological Features” 

(function i). Simple DBNs (e.g., HMMs and Kalman 

filters) are thus ingrained in a Euclidean space where 

structural information is exhibited.  

4. Problems Addressed by Topological     

 Dynamic Bayesian Networks 

The problems addressed in the context of a TDBN are: 
 

(i) Learning a TDBN: The goal is to learn the positions 

of the points of the set X (the TDBN) in the Euclidean 

space. This phase derives directly from the learning phase 

of a traditional DBN [2] but also on the choice of the pivot 

vertices of the DBN. In other words, the refinement of the 

DBN structure and the local variable distributions given 

the data as well as a change of the dimension axes (pivot 

vertices) of the Euclidean space will decide on the 
positions of the TDBN points. 
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By convention: Vertices that are 
not reachable from any source are 

assigned a zero shortest-distance 

from that source. 

Figure 1. Topological network assigned to the network N: 

Vertices are embedded in a 3D vector space as points. 



 
 

(ii) Shape of a TDBN: Since a TDBN X (originated from 

a DBN) represents a discrete set of points, therefore, the 

concept of continuity which represents the foundation of 

topology is difficult to apply. This is the reason why it is 

necessary to map a discrete set to a continuous set. The 

most natural way to achieve this objective is provided via 
the notion of “shape”. An efficient means for creating 

shapes out of point sets is provided by shape constructors 

such as the “-shapes” formalism [13]. The -shape 
concept represents a formalization of the intuitive notion 

of “shape” for spatial point set data. An -shape is a 
concrete geometric object that is uniquely defined for a 

particular set of points. The parameter  controls the 
desired level of details of the shape. There are several 

algorithms that construct a family of shapes for a given set 

of size n in a worst-case time complexity equal to O(n2) 

[13]. The “best” alpha-shape assigned to a TDBN is 

produced only by an optimal DBN given a set of pivot 

vertices. The -shapes define a hierarchy of shapes from a 
set of points (TDBN) that allows features multiscale 

modeling that are very useful inmacromolecule structure 

exploration as well as in facial aging (identifying changes 

of human facial compartments: a human face is made of 

compartments of fat). The -shapes insert a ball of radius 

  around each point and build a simplicial complex that 
respects the intersections among these balls. The 

simplicial space formed is defined as the -shapes. Figure 

2 depicts two shapes of the TDBN for different  values. 

One can notice that more points are connected when =2 

compared to when =0.5. The increase in the connected 

points is proportional to (2 - 1). 

 

Since the balls around two points in an -shape have to 
intersect to express the probabilistic relationship between 

their corresponding vertices in the DBN therefore, the 

value of  should obey: 𝛼 ≥ 𝑑𝑖𝑗
2 4 , where dij is the 

Euclidean distance between these two points in the TDBN. 

It is clear that the -shapes depend on the positions of the 
points of X that are driven by the traditional DBN learning 

phase. Furthermore, one can extract “signatures” of -
shapes (or any other shape constructor assigned to a 

TDBN) such as metric properties: (volume, area and 

length), combinatorial properties: (number of tetrahedral, 

triangles, edges, vertices) and topological properties: 

(number of components, number of independent tunnels, 

and number of voids). These signatures are put into a 

vector form that characterizes an -shape (or any other 
shape constructor). 

 

(iii) Topological Mappings: Because shape constructors 

(e.g., -shapes) transform a discrete space (TDBN) into a 
continuous space, therefore other features such as 
homeomorphism and homotopy equivalence can also be 

exploited. If h(X) = A (A is a shape constructor applied to 

a TDBN = object of study) then the pair (A,d) represents 

a metric space (d is a distance function). A 

homeomorphism map (bijective, bicontinuous) between 

two metric spaces (A1,d1) and (A2,d2) can be built. A1 and 

A2 are two topologically similar objects (or the same 

object). Similarly, we have the following definition: 

Definition 2. Two spaces A1 and A2 are homotopy 

equivalent if there exist continuous maps f: A1A2 and g: 

A2A1 such that gof is homotopic to the identity map idA1 
and fog is homotopic to idA2. Intuitively, two spaces (or 

objects) A1 and A2 are homotopy equivalent if they can be 

transformed into one another by bending, shrinking and 

expanding operations.  
 

(iv) Training: Given a VO sequence as input, the first 

phase consists of selecting the VO sequence model which 

is a DBN that explains the VO sequence. The second 

phase focuses on training the DBN from the data to obtain 

an optimal DBN. The third phase consists of assigning the 

optimal DBN to its corresponding embedded DBN to 

obtain an optimal TDBN. The fourth phase consists of 

constructing the shapes assigned to the TDBN by applying 

different geometric constructors (e.g., -shapes (AS), 
flow-shapes (FS) and union of balls (UB)) using any state-

of-the-art shape constructor algorithm [14]. A set of 

shapes is formed for different values of  that depend on 
the TDBN points’ density. Because it has been proven that 

the -shapes, the “flow-shapes”, and the “union of balls” 
constructors are homotopy equivalent [14], therefore they 
provide “similar” continuous shapes when applied to the 

same TDBN. Finally, signatures (vectors) of these similar 

shapes are computed and put together in a cluster to form 

a homotopic equivalence class []. The entire process 
(from the VO sequence to the homotopic class formation) 

is undertaken for all VO observation sequences forming 

the training set. This process is depicted by Figure 3. Two 

signature vectors of the homotopic equivalence class [] 
are related since they represent “similar shapes” obtained 

via the three homotopic constructors (the -shapes, the 
“flow-shapes”, and the “union of balls”). This process of 

assigning homotopic equivalence classes [i] (i=1,…,c) is 
unsupervised and conducted offline during training.  
 

 = 2  = 0.5 

Figure 2. Two -shapes with  = 0.5 and  = 2 represent the 

shape of the TN of the example in section 3.2 at different level 
of details. 
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 (v) Classification/Testing: Given a VO sequence O = 

o1,o2,…,oT, the classification problem is stated as follows: 

Determine the class * (denoted [*]) among c target 
classes assigned to this VO sequence such that: 

 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖
𝑃 𝑖 |𝑜1 , 𝑜2 , … , 𝑜𝑇 , (𝑖 = 1, … , 𝑐).    

This is equivalent to the determination of the class * 

such that:  ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖
𝑃 𝑖 |𝑣1 ,𝑣2 , … , 𝑣𝑛  , where the 

sequence (𝑣1 , 𝑣2 ,… , 𝑣𝑛) represents the DBN assigned to 

the VO sequence(𝑜1 , 𝑜2 , … , 𝑜𝑇). However, the idea is to 

utilize the embedding process g in which xi=g(vi); 

therefore, one can write: 

𝑃 𝑖 |𝑣1 , 𝑣2 ,… , 𝑣𝑛 ≡ 𝑃 𝑖   𝒉  𝒈  𝑣1 ,𝑣2 , … , 𝑣𝑛  . 
This latter expression can also be written as: 

𝑃 𝑖 |h 𝑥1 , 𝑥2 , … , 𝑥𝑛   , which consists of evaluating the 
probability that the shape obtained by applying the 

geometric constructor 𝑕 to a TDBN belong to the 

homotopic class . Since, there are three homotopic 

equivalence constructors with different  values; therefore 
a set of signature vectors is generated. This set of vectors 

is represented by its mean vector S . In conclusion, the 
classification problem is expressed as: 

 

𝑃[𝑖 |𝒊(h 𝑥1 , 𝑥2 , … , 𝑥𝑛  ) = S ]. 
 

In other words, for a given TDBN, this classification 

problem consists of assigning a homotopic equivalence 

class to an input set of signature vectors characterized by 

their mean vector. Any continuous deformation of a shape 

is therefore captured. It is worth to underscore that this 

investigation goes beyond traditional classification 

objective since its purpose is not limited only to 

classifying objects but also to seeking interrelationships 
between geometric constructors that impact objects. The 

classification problem is further detailed as: 

 

𝑃 𝑖  S  =
𝑃 S  𝑖 . P(𝑖)

 𝑃(S |𝑖=𝑐
𝑖=1 𝑖). P(𝑖)

. 

 

We assume that each class i is made of signature samples 

(obtained by assigning many different values of  in the 

constructors) that come from a known number of 3 

mixtures (3 homotopic shapes) whose probability structure 

is Gaussian.  

𝑃 S  𝑖 =  𝑐𝑖𝑘

𝑘=3

𝑘=1

𝑁 S , 𝜇𝑖𝑘 , 𝑈𝑖𝑘  ,    1 ≤ 𝑖 ≤ 𝑐 

where 𝑐𝑖𝑘  is the mixture coefficient for the k-th mixture in 

class 𝑖 . Without loss of generality, 𝑁 S , 𝜇𝑖𝑘 , 𝑈𝑖𝑘   is 
assumed to be a Gaussian probability density function 

with mean vector 𝜇𝑖𝑘  and covariance matrix 𝑈𝑖𝑘 .  

 
Different modules in the TDBN Classifier: 
 

1. Update the DBN parameters through learning via data 
2. Map the optimal DBN to its corresponding TDBN 

3. Compute -shapes, “flow-shapes”, and “union of balls” 

4. Extract topological feature vectors for training   
5. Build homotopic clusters from feature vectors 
6. Test incoming patterns for classification. 

 

5. Application and Preliminary Results 

(i) Face Identification across Ages:  
 

Problem statement: Given a face sample of an individual 

at age a0; one determines if this input face is associated 

with any of a large number of enrolled faces of 

individuals. However, some face images of the same 

individual at ages (a1  a0+15 years) are among the 
enrollees. In other words, given two faces, can one infer 
that they represent the same individual at different ages?  

A human face is viewed as an ordered visible observation 

sequence O = o1,...,oT. Each oi is a vector that captures a 

facial region such as: “hair”, “forehead”, “eyes”. These 

vectors are obtained by scanning the image from left to 

right and top to bottom using a 2D window. Each block 

image undergoes discrete wavelet transform (DWT) 

decomposition [15], producing an average image and a 

sequence of detail images. The sub-image is then 

decomposed to a certain level and the sub-band energies 

are selected to form the feature vector oi. The facial 

regions (forehead, eyes, mouth, ears, nose) are latent 
variables (or hidden states) and the oi are the observables 
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Figure 3. Embedding of a particular DBN (autoregressive HMM) assigned to an amino acid sequence in a Euclidean space. The -shape 

(depicted in this figure) is one of the possible constructors that provide a shape to the TDBN from which topological features are 
generated. 

 



 
 

(feature vectors of sub-band energies); all these variables 

represent vertices of a dynamic Bayesian network 

(autoregressive HMM). The weights in this network 

represent conditional probabilities between a facial region 

and a feature vector, between two facial regions and two 

feature vectors. The DBN is embedded in a Euclidean 
space to form the TDBN subspace of a face. We then 

apply shape constructors associated to the TDBN to 

extract the signature vectors of the face. Since we are 

considering 3 shape constructors (with different  values) 
that are topologically equivalent, therefore several 

signature vectors are extracted and gathered to form a 

homotopic equivalence class  that represents a face at a 
particular age (refer to Figure 4).  

 

We have conducted the same task with 3 face images 

(with different facial expressions) of different ages of the 

same individual. 2 of these 3 faces are left for training 

whereas 1 face of the same individual is left for testing. 
The homotopic classes assigned to the 2 training faces of 

the same individual are merged together to form a “super 

homotopic class”. We have collected 50x3= 150 face 

images from family members and friends; but since it is 

difficult to obtain a large number of faces of same 

individuals at different ages that would provide a 

statistical significance, we have used 100x3=300 

simulated faces obtained via dedicated software. Aging 

patterns are introduced by changing values of some input 

parameters. We have therefore built a database of 450 

faces in total. In order to measure the power of 
generalization of the TDBN classifier, we used the m-fold 

cross-validation estimation technique. We divided the 

images of the 450 face images into 5 sets (m=5), each of 

which contains 90 face images. We then selected 1 set for 

testing (validation data) and the other 4 sets (360 face 

images) for training ensuring that only 1 face of an 

individual is included in the testing set and the 2 other 

faces of this individual are part of training. We repeated 

this procedure 5 times with each time selecting a different 

set for a validation data. The 5 results from the folds are 

averaged to produce a single estimation. Finally, testing 
was undertaken by extracting the mean vector signature 

S  (as described in section 3-v) of the input face and 

computing the class whose posterior probability P(i|S ) is 
maximum. Preliminary results are encouraging; they show 

that a TDBN outperforms standard DBN using different 

DWT kernels during a 5-fold cross validation experiment 

(refer to Table 1).  
 
 

DWT 

Kernels 

Average 

Precision of 

DBN 

Average 

Precision of 

TDBN 

Haar 84.2 92.2 

Biorth9/7 78.0 89.8 

Coiflet(3) 85.6 94.7 

Gabor 85.9 91.3 
 

Table 1. Average precisions (%) of TDBNs and DBNs using 5-
fold cross validation with different DWT kernels.  
 

The highest precision currently achieved by TDBN is 

94.7% via Coiflet. The precision P in each fold is defined 
by the following ratio: 
 

 𝑜𝑓 𝑓𝑎𝑐𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑕𝑎𝑡 𝑤𝑒𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙  𝑜𝑓 𝑓𝑎𝑐𝑒 𝑖𝑚𝑎𝑔𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
𝑥100%, 

 

where the sign "" 𝑚𝑒𝑎𝑛𝑠 "𝑛𝑢𝑚𝑏𝑒𝑟".  
 

 (ii) Role of Homotopy Equivalence: 
 

Since the TDBN is determined by a VO sequence and a 

DBN, therefore what information the -shapes 
encapsulate that make it possible for the performance to 

increase? The answer stems from the idea of extracting 

several topologically equivalent shapes assigned to the 

DBN via the TDBN.  There is an increase of connected 

points in the -shapes faces during a human face aging 
process as it has been noticed from the example of Figure 

2. The generation of many different shapes from the same 

face DBN allows exploring several deformations of the 

same human face. All these different shapes are homotopy 

equivalent. In fact, both -shapes and flow shapes for 
example can be applied to generate a hierarchy of shapes 

from a set of points. This permits multi-scale modeling 

which appears to be suitable in revealing features at 

1 2 3 
Constructor 

Signatures 4 

Facial Region 

(Eye) 

Class  

AS 

UB 
FS 

VO sequence 

 via DWT 

Figure 4. Diagram showing a face as an autoregressive model (DBN) that is embedded in a TDBN whose constructor (AS, FS, UB) 
signatures are extracted to form the face homotopic equivalence class. 

 

A face DBN 



 
 

different length scales such as fat compartments in a 

human face). This pattern cannot be exploited using the 

DBN concept alone, since homotopy equivalence is absent 

in a standard DBN. The different values of  depicts 

different levels of “aging details” in the -shape assigned 
to the face TDBN.  In conclusion, it appears that the 

fusion of statistics (in DBN) and topology (in TDBN) 

allows deformations of objects to be exhibited and 

modeled. For example, the changes in facial features (such 
as appearance of wrinkles, or loss of firmness of the skin, 

or facial contour deformation) due to aging are captured 

by some DWT kernels and incorporated in the shape 

signatures provided by homotopic constructors. 

Furthermore, signature vectors contain topological 

invariants that are vital for identifying the same individual 

at different ages of her life.  

 

(iii) Impact of this Research on Aging:  
 

This investigation allows gaining an insight into one of the 

most important mysteries related to facial aging. How 
facial aging is being managed by Mother Nature? It has 

been conjectured that the face is made up of individual fat 

compartments that gain and lose fat at different times and 

different rates as we grow older. Understanding how fat is 

compartmentalized will allow doctors to be very precise in 

how facial rejuvenation could be approached. The TDBN 

approach might help unravel this biological mechanism. 

The distribution of the components of the signature 

vectors is the key to providing some clues to this unsolved 

problem. This distribution helps explaining how these 

separate compartments change as we age. Our next 

objective is to analyze the signatures of youthful faces 
(that exhibit smooth transitions between the fat 

compartments) with respect to the value assigned to . 
The outcomes from this investigation could have 

tremendous implications in assisting plastic surgeons 

target facial “deformed” areas and use “injectible fillers” 

to increase volume to individual regions of the human 

face. It could also help in designing novel cosmetic and 

reconstructive surgery techniques. Since aging occurs at a 

cell level, this research might hold clues to the 

investigation of other diseases such as diabetes obesity, 

and cancer. 

6. Conclusion 

We have introduced an extension of graph embedding to 

network embedding. Our mission is to focus on dynamic 

Bayesian networks. The methodology that is proposed 
allows topological features to be accounted for during a 

classification task via DBN. This fusion of statistics and 

topology expressed via the concept of topological dynamic 

Bayesian network is a preliminary endeavor to connect 

discrete structures with continuous structures. 

Experimental results have demonstrated the need for such 

formalism that reaches beyond a pure statistical analysis. 

Many crucial problems such as “find tumors that are 

similar to a given pattern image-guided radiation therapy”, 

or “is the morphology of galaxy A related to the 

morphology of galaxy B?” and others issues in genomics 

and proteomics will benefit from this fusion. Medical 
researchers might use a TDBN approach to: (i) repair a 

damaged brain by transforming it into a healthy one, and 

(ii) investigate the causes of a brain injury and (iii) 

identify its location. Similarly, Industry is interested in 

applications that take into account the elastic nature of 

objects, such as a piston sliding along a cylinder in 

response to changes in pressure.  
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