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Abstract _

This correspondence is concerned with the problem of morphological ambiguities using a Markov
process. The problem here is to eliminate interferent solutions that might be derived from a
morphological analysis. We start by using a Markov chain with one long sequence of transitions. In this
model the states are the morphological features and a sequence corresponds to the transition of a word
form from one feature to another. After having observed an inadequacy of this model, one will explore a
nonstationary hidden Markov process. Among the main advantages of this latter model we have the
possibility to assign a type to a text given some training samples. Therefore, a recognition of "style” or a
creation of a new one might be developed.

1. Introduction
1.1. Automatic analysis of natural language

This work lies within a textual analysis system in natural language discourse (french
in our case). In most systems used today, the analysis process is divided into levels,
starting from morphology (first level) through syntax, and semantics to pragmatics.
These levels are sequentially activated, without backtracking, originating in the
morphological phase and ending in the pragmatic phase. Therefore, the i-th level knows
only the results of preceding levels; in particular, the morphological analysis works
without any reference to the other levels. This means that each word in the text (a form) is
analyzed autonomously out of context. Hence, for each form, one is obliged to consider
all possible analyses.

* Much of the research on which this paper is based was carried out in order to be used in the framework
of MMI2 (A Multi-Modal Interface for Man Machine Interaction). This interface is part of a project
partially funded by the Commission of the European Communities ESPRIT program.
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Example: let's consider the sequence of the two forms "cut” and "down":
- "cut" can be given 3 analyses: verb, noun, adjective;
- "down" can be a verb, an adverb or a noun.
- The number of possible combinations based upon the independence of the analysis of
one form in relation with the others implies that the phrase "cut down" is liable to nine
interpretations; whatever its context.

These multiple solutions are transmitted to syntactic parsing which doesn't eliminate
them either. In fact, as a syntactic parser generates its own interferent analyses, often
from interferent morphology analyses, the problems with which we are confronted are far
from being solved.

In order to provide a solution to these problems, we have recourse to statistical
methods. Thus, the result of the morphological analysis is filtered when using a Markov
model.

12. Morphological analysis

A morphological analyser must be able to cut up a word form into smaller components
and to interpret this action. The easiest segmentation of a word form consists in
separating word terminations (flexional endings) from the rest of the word form called
basis. We have then got a flexional morphology. A more accurate cutting up consists in
splitting up the basis into affixes (prefixes, suffixes) and root. This is then called
derivational morphology.

The interpretation consists in associating the segmentation of a word form with a set
of information particulary including:

- the general morphological class: verb, noun-adjective, preposition, ...
- the values of relevant morphological variables: number, gender, tense,...

Therefore, an interpretation is a class plus values of variables; such a combination is
called a feature. Note that a word form is associated with several features in case there are
multiple solutions.

1.3. Why statistical procedures ?

Because of the independence of the analysis levels, it is difficult to provide contextual
linguistic rules. This is one of the reasons why we fall back on statistical methods. These
latter methods possess another advantage: they reflect simultaneously language
properties, eg., the impossibility to obtain a determinant followed directly by a verb, and
properties of the analysed corpus, eg., a large number of nominal sentences.

Some researchers used Bayesian approaches to solve the problem of morphological
ambiguities. However, these methods have a clear conceptual framework and powerful
representations, but must still be knowledge-engineered, rather than trained. Very often in
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the application of those methods researchers have not a good observation of the
individuals of the population, because the observation is a relative notion. Therefore, we
have difficulty in observing possible transitions of these individuals. The way of
"capturing” the individuals depends on the environment encountered.

2. A morphological features Markov chain

2.1. The semantic of the model

Let (f;) (i = 1 to m) be the states or morphological features, we have only one
individual (n =1) for each transition time t € {1,2,...,T}. A first-order m-state Markov
chain is defined by an m*m state transition probability matrix P, and an m*1 initial
probability vector I'1, where

P= [Pﬁﬁ], Pggj = Proble,,; = fil e = f.), ij =1.2,...m,

Il = {11}, T, = Proble, =f],i=12,...m,

E = {¢,} is a morphological features sequence, t = 1,2,...,T.

The parameters m and T are respectively the number of states and the length of state
sequence. By definition, we have

k=m

J=m
2 P=1fori=12,..m and 2, I =1.
j=1 1J k=1 k

The probability associated to a realization E of this Markov chain is

Prob [E/PJT) =TI, * g B o

2.2. Estimation of transition probabilities

As pointed out by Bartlett in Anderson and Goodman [1], the asymptotic theory must
be considered with respect to the variable "number of times of observing the word form
in a single sequence of transitions" instead of the variable "number of individuals in a
state when T is fixed". However, this asymptotic theory was considered because the

number of times of observing the word form increases (T—eo). Furthermore, we cannot

investigate the stationarity properties of the Markov process since we only have one word
form (one individual) at each transition time. Therefore, we assumed stationarity. Thus, if

Nﬁfj is the number of times that the observed word form was in the feature f; at ime
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(t- 1) and in the feature fj at time t for all t € {1..T}, then the estimates of the transition

probabiliies are
Nrirj
P.. =
fifj Nf :

where Ng, is the number of times that the word form was in state f;. The estimated

transition probabilities are evaluated on one training sample. We removed the
morphological ambiguities by choosing the sequence E of higher probability.

3. A Markov model with hidden states and observations

The inadequacy of the previous model to remove certain morphological ambiguities
has led us to believe that some unknown hidden states govern the distribution of the
morphological features. Instead of passing from one morphological feature to another we
might transit from a hidden state to another. Besides, in section 2 we focused only on the
surface of one random sample, i.e., an observation was a morphological feature. As
pointed out in [4], this latter entity cannot be extracted without a context effect in a
sample. In order to consider this context effect, we have chosen criteria like "the nature of

"o "o

the feature”, "its successor feature”, "its predecessor feature”, "its position in a sentence"
and "the position of this sentence in the text". An observation o, is then a "known hidden

vector” whose components are values of the criteria presented here. However, one can
explore other criteria.

Definition 3.1. A hidden Markov model (HMM) is a Markov chain whose states
cannot be observed directly but only through a sequence of observation vectors.

An HMM is represented by the state transition probability P, the initial state
probability vector IT and a (T*K) matrix V whose elements are the conditional densities
v;(o,) = density of observation o, given ¢, = i, K is the number of states. Our aim is the

determination of the optimal model estimate 0* = [I1* P*,V*] given a certain number of
samples, this is the training problem.

Theorem 3.2. The probability of a sample S = {o 110,07} given a model ¥ can be

wrilten as:

Pr(Si9)=2 IL v, (0,)* fir v, (0,).
E =2

&r.1¢

139



Proof. For a fixed state sequence E = €,,e,,...,.e, the probability of the observation
sequence S = 0,,0,,...07 is Prob(S / E, ) = v_;(0,)*v,(0,)*...*v 1(01). The probability
of a state sequence is: Prob(E / 9) =TI, Pejp*Pepes™...*Perr 1)o7 Using the formula:

Prob(S , E /8) = Prob(S / E, ) * Prob(E / ¥) and summing this joint probability over all
possible state sequences E, one demonstrates the theorem.

The interpretation of the previous equation is: initially 2 time t = 1, the system is in
state ¢, with probability I1, and we observe o, with probability v, (0,). The system then
makes a transition to state e, with probability P, ., and we observe o, with probability
V¢,(0,). This process continues until the last transition from state e , to state ey with
 probability Py, .7 and then we observe oy with probability v r(op).

In oder to determine one of the estimate of the model ¥ = [TL,P,V], one can use the

maximum likelihood criterion for a certain family §; (i€ {1,2,....L}) of training

samples. Some methods of choosing representative samples of fixed length are presented
in [2]. The problem can be expressed mathematically as:

mﬁeiix £(5,:85:83::45/ O} =M j.:x{ j[j[ %Hel* Ve (0D * E By * ve‘(d)]}-
There is no known method to solve this problem analytically, that is the reason why
we use iterative procedures. We start by determining first the optimal path for each
sample. An optimal path E* is the one which is associated to the higher probability of the
sample. Using the well-known Viterbi algorithm, one can determine this optimal path.
The different steps for finding the single best state sequence in the viterbi algorithm are:

stepl: initialization
0,(i) = IT.v; (o)), (1 <i<K)

¥,(i) =0,

step2: recursion
for(2>t>T)and (I <j<K),

8(j) = maxisé, (i P;l v{o,),
IgiskK
W(j) = argmaxis, (i ;1 ,
l1<isK
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step3: termination
P*=max [‘Sr(i)]
15isK

er* = Argmax [84i)

1g5iskK

| step4: state sequence backtracking
fort=T-1,T-2,...,1

* = *®
£p = l“Vrﬂ' €rel -

P* is the state-optimized likelihood function and E* = {e,*.,e,*,....er*} is the optimal
state sequence. Instead of tracking all possible paths, one successively tracks only the
optimal paths E.* of all samples. Thus, this can be written as:

g(04,0,,05,...,07 ; E*, 8) = mgx{ Hel* Ve, (0D * g Pe, i v‘t(O‘)J ,

this computation has to be done for all the samples. Amoag all the 3,i€ {1....L})

associated to optimal paths, we decide to choose as best model estimate the one which
maximizes the probability associated to a sample. It can be written as:

13*=aI'gImaX{g(oil,oiz,...,ofr;E*,ﬁi)H. ie [123..L).
L 94 J

4. The different steps of the method

We present an iterative method which enables us to obtam an estimator of the model

9. This method is suitable for direct computation.

First step: one has to cluster the sample with respect to the chosen criteria, two
possibilities are offered : a classification or a segmentation. In this latter procedure, The
user may structure the states, operating in this way, the states appears like known hidden

states. However, in a classification the system structures its own states according to a
suitable norm. Thus, the states appears like unknown hidden ones. The clusters formed
by one of the two procedures represent the first states of the model, they form the first
training path.
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Second step: one estimates the transition probabilities using the following equations and

the probability of each training vector for each state i.e., v;(0)), this is the first model 0,.

number of times the observation o, belongs to the state i

1= number of training paths ’
~ number of times {(o, ; belongs to i) and (o, belongs 10 j) }
P;(t) = —imber of imes the observation o, belongs 01

the previous estimation formula can be written as

N.(t) N.()
P(t) = —l:’—-— = L

the expected number of times of being in state i and observing o,
vi(o‘) = »

the expected number of times of being in state i

forij=12,..Kandt=1.2,..T, where Nij(t) is the number of transitions from state i

at time (t - 1) to state j at time t and Ni(t - 1) is the number of times the state i is visited at

time (t- 1).

Third step: one computes £(0,,0,...,0 ; ©,) and determines the next training path or
clustering capable to increase f(0,,0,,...,01 ; ©,). We apply the second step to this
training path. This procedure is repeated until we reach the maximum value of the

previous function. At this optimal value, we have E,* and 8, of the first sample. This
step uses Viterbi algorithm.

This algorithm is applied to a family of samples of the same text, so we obtain a

family of E;* and 8. As mentioned previously, one decides reasonably to choose the

model 9* whose probability associated to a sample is maximum. This last model makes
the sample the most representative, i.e., we have a good observation in some sense. This
optimal model estimate is considered as a fype of the text processed.

5. Test for first-order stationarity
As outlined by Anderson and Goodman [1], the following test can be used to

determine whether the Markov chain is first-order stationary or not. Thus, we have to test
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the null hypothesis

H: B.(0) = Py (1 =1.2,...T).

The likelihood ratio with respect to the null and alternate hypothesis is

=TT -

ll:—IJIP

1}( )

11(3()

We now determine the confidence region of the test. In fact, the expression - 2 log A is
distributed as a Chi-square distribution with (T - 1)*K*(K-1) degrees of freedom when

the null hypothesis is true. As the distribution of the statistic S =-2 log A is x2, one can

compute a B point (B =95, 99.95% etc.) as the threshold S p- The test is formulated as:
if S < Sﬁ‘ the null hypothesis is accepted, i.e., the Markov chain is first-order stationary.

Otherwise, the null hypothesis is rejected at 100% - B level of significance, i.e., the chain
is not a first-order stationary, and one decides in favour of the nonstationary model.

6. How to solve the morphological ambiguities

This is the most important phase of our application. Let's consider an example of nine
possible paths encountered in a text. Among these paths, the system has to choose the
most likely according to the probability measure, see figure 1. Our decision of choosing

the most likely path comes from the optimal model 3+ obtained in the training phase. We
show in this example how to remove the morphological ambiguities.

If the optimal state sequence obtained in the training phase is the one which
corresponds to the figure 2., then one for example can choose between the two following
paths of the figure 1:

Pathl: 5, 5, 53 S, 85 S5 Sp

path2: 5, 5, 83 54 S5 §'g 57

One computes the probabilities of these two realizations of the observations o; (i =1,...,7)

using the formula:

Pr (°1’°2v---9°.‘7 [8%) = Uq* vel(ol) " j:i P e Ve (0
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The figure 2. shows that each s; belongs to a state e; and using the optimal model

9* = [ITP,V] one can computes the probability of a path. Our decision to remove the
morphological ambiguities is to choose the path with the highest probability.

~

An observation vector

it's successor feature

it's predecessor feature

the position of the feature
in a sentence

the position of the sentence
in the text.

Fig.1.

The optimal state sequence is: 1 334223

\ y

Fig. 2.
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7. Conclusion

We have presented a new approach for solving the morphological ambiguities using a
hidden Markov model. This method may also be applied to other analysis levels as
syntax. The main advantage of the method is the possibility to assign many different
classes of criteria (fuzzy or completely known) to the training vectors and investigating
many samples. Furthermore, we can define a "distance" between any sample and a family
of types of texts called models. One may choose the model which gives the higher
probability of this sample and conclude that the sample belongs to this specific type of

texts. We can also develop a proximity measure between two models 0*; and ¥*,

through representative samples. However, some precautions must be taken in the choice
of the distance used between the training vectors in the cluster process. In fact, the value
of the probability associated to a sample may depend on this norm and therefore, the
choice of the best model estimate can be affected.

So far, we supposed that the criteria described the observations and the states are
completely known (hard observation). Very often, when we want to make deep
investigations, fuzziness or uncertainty due to some criteria or states are encountered,
what to do in this case? How can we cluster the observations according to any uncertainty
measure? What is the optimal path and the best estimate model according to this
uncertainty measure? We are working in order to propose solutions to those questions in
the case of a probabilistic [3] and a fuzzy logic.
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