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INTRODUCTION

Ordinary logic is very often used when dealing with certainty, but in many fields when
we have to treat uncertainty or ‘fuzziness’ boolean logic appears a very poor concept.
Several artificial intelligence (Al) or linguistic applications require the ability to reason
with uncertain information. The semantic generalization of logic in which the truth
values of sentences are probability values between ¢ and 1 seems to be necessary,
assignment of probability values could be consistent or inconsistent.

A lot of mathematical work on probabilistic inference already exists (Suppes, 1966;
Zadeh, 1975). For instance, the MYCIN expert system handled uncertain knowledge,
and the PROSPECTOR system used a method based on Bayes's rule (Duda et al., 1976).
In this chapter, our interest is in providing a new way of extending Nilsson’s (1986)
probabilistic logic by exploring different metrics. We adopt a geometric approach and
discuss the relative notion of an extreme vector.

The second section defines the notion of consistency and the probability concept.
The third section presents the algebraic and geometric interpretation. The next four
sections present several ways of obtaining the consistent region according to metrics.
We explore the infinite norm, the L; norm, the Euclidean norm, and also their
corresponding isometries. The interpretation of Bayes's theorem when using the L,
norm is discussed in the eighth section.

CONSISTENCY AND PROBABILITY

We define these concepts by an example. Let us consider the set of sentences
& ={P,1Pv Q Q}, so that we expect to obtain among all possible worlds (2%) just
2% consistent possible worlds; other possible worlds are inconsistent.

Many methods exist for determining the sets of consistent truth values, given a set
of sentences. A basic method is that called the binary semantic tree (Kleene, 1987).
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Figure 28.1 The binary tree.

We create nodes by branching left or right, depending on whether or not we assign
one sentence a value of TRUE or FALSE respectively.

At each node, we branch left or right, depending on whether or not we assign one
of the sentences in & a value of TRUE or FALSE, respectively. Just below the root, we
branch the truth value of the next sentences of our set &, and the procedure continues
until the last sentence of #. We obtain at the end a set of paths corresponding to unigue
assignments and we close off those paths corresponding to inconsistent valuations, as
illustrated in Fig. 28.1. The black circles correspond to the closed paths (inconsistent
evaluation), the numbers ‘1’ and ‘0’ at the right of each sentence correspond, respectively,
to the evaluation TRUE and FALSE of the sentence. Thus we can write the matrix
corresponding to the diagram, which consistent matrix we will denote C:

1100
C=|10 1 1
1 0 1 0

We can choose the probability of any sentence S as P(S) = 3 P(V, Vv (S) where P(V)
is the probability that the actual world V,, is equal to V, the characteristic function i
is defined as:

1 if Sis truein V,
(5) = :
v {0 if Sis false in V,

V; are the column vectors of the matrix € and i belongs to the set {1, 2,3,4}. This
definition of the probability associated with a sentence gives a mathematical and
geometric interpretation of the consistent area in the space of the three sentences.

THE ALGEBRAIC AND GEOMETRIC INTERPRETATION

Let us consider the following mapping between the space of possible worlds and the
one of sentences. This mapping is the homomorphism associated with the consistent
matrix C called '¥. Let X and Y denote, respectively, the space of possible words and
that of sentences. We can plot the following diagram corresponding to our example:



