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Capturing observations in a nonstationary hidden
Markov model

Djamel Bouchaffra and Jacques Rouault

Cristal-Gresec - Université Stendhal
B.P. 25 - 38040 Grenoble Cedex 9 - France

ABSTRACT This paper is concerned with the problem of morphological ambiguities using a Markov process. The
problem here is to estimate interferent solutions that might be derived from a morphological analysis. We start by using
a Markov chain with one long sequence of transitions. In this model the states are the morphological features and a
sequence correponds 1o a transition from one feature to another. After having observed an inadequacy of this model,
one will explore a nonstationary hidden Markov process. Among the main advantages of this latter model we have the
possibility to assign 2 type to a text, given some training samples. Therefore, a recognition of “style” or a creation of a
new one might be developped.

27.1 Introduction

27.1.1 Automatic analysis of natural language

This work lies within a textual analysis system in natural language discourse (French in our case).
In most systems used today, the analysis process is divided into levels, starting from morphology
(first level) through syntax, and semantics to pragmatics. These levels are sequentially activated,
without backtracking, originating in the morphological phase and ending in the pragmatic one.
Therefore, the i-th level knows only the results of preceding levels. This means that, at the
morphological level, each word in the text (a form) is analyzed autonomonsly out of context.
Hence, for each form, one is obliged to consider all possible analysis.
Example : let’s consider the sequence ot the two forms cut and down :

e cut can be given 3 analyses : verb, noun, adjective ;
» down can be a verb, an adverb or a noun.

The number of possible combinations based upon the independance of the analysis of one form
in relation with the others implies that the phrase cut down is liable to nine interpretations,
independently on the context.

These multiple solutions are transmitted to syntactic parsing which doesn’t eliminate them
cither. In fact, as a syntactic parser generates its own interferent analyses, often from interferent
morphology analysis, the problems with which we are confronted are far from being solved. In
order to provide a solution to these problems, we have recourse to statistical methods. Thus the
result of the morphological analysis is filtered when using a Markov model.

1 Selecting Models from Data: Al and Statistics IV Edited by P. Cheeseman and R.W. Oldford. © 1994 Springer-Verlap.




264 Djame! Bouchaffra and Jacques Rouvault

27.1.2 Morphological analysis

A morphological analyser must be able to cut up a word form into smaller components and
to interpret this action. The easiest segmentation of a word form consists in separating word
terminations (inflexional endings) from the rest of the word form called basis. We have then
got a inflexional morphology. A more accurate cutting up consists in splitting up the basis into
affixes (prefixes, suffixes) and root. This is then called derivational morphology.

The interpretation consists in associating the segmentation of a word form with a set of
informations, particulary including :

o the general morphological class : verb, noun-adjective, preposition, ...
s the values of relevant morphological variables : number, gender, tense, ...

Therefore, an interpretation is a class plus values of variables ; such a combination is called a
Jfeature. Note that a word form is associated with several features in case where there are multiple
solutions.

27.1.3 Why statistical procedures?

Because of the independance of the analysis levels, it is difficult to provide contextual linguistic
rules. This is one of the reasons why we fall back on statistical methods. These latter method
possess another advantage : they reflect simultaneously language properties, e.g. the impossi-
bility to obtain a determinant followed directly by a verb, and properties of the analysed corpus,
e.g. a large number of nominal phrases.

Some researchers used Bayesian approaches to solve the problem of morphological ambigui-
ties. However, these methods have a clear conceptual framework and powerful representations,
but must still be knowledge- engineered, rather than trained. Very often in the application of
these methods, researchers have a good observation of the individuals of the population, because
the observation is a relative notion. Therefore, we have difficulty in observing possible tran-
sitions of the individuals. The way of “capturing” the individuals depends on the environment
encountered. ¢

27.2 A morphological features Markov chain

27.2.1 The semantic of the model

Let m be the number of states, T the length of state sequence and {f;/1 < i < m} the states
or morphological features ; we have only one individual (n = 1) for each transition time
t=1,2,...,T. A first order m-states Markov chain is defined by an m x m state transition
matrix P, anm x 1 initial probability vector I, where :

P =(Pyy)
,j=1,2,...,m
Py, 3; = Problecy = fi/er = f)

H!i = Prob[el = fil
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o B

By definition, we have :

i=m
ZPfhfj:l pouri=1,2,...,m
i=1

k=m
Z O, =1

k=1
The probability associated to a realization E of this Markov chain is :

=T
Prob|E{P,II| = I, x [] Pep_y e
=2

27.2.2 Estimation of transition probabilities

As pointed out by Bartlett in Anderson and Goodman [AGS57] the asymptotic theory must be
considered with respect to the variable number of times of observing the word form in a single
sequence of transitions, instead of the variable number of individuals in a state when T is fixed.
However, this asymptotic theory was considered because the number of times of observing the
word form increases (T — +o0). Furthermore, we cannot investigate the stationary properties
of the Markov process, since we only have one word form (one individual) at each transition
time. Therefore, we assumed stationarity. Thus, if Ny, ;; is the number of times that the observed
word form was in the feature f; at time £ — 1 and in the feature f; at ime ¢, fort € {1,2,...,T},
then the estimates of the transition probabilities are :

where Ny is the number of times that the word form was in state f;. The estimated transition
probabilities are evaluated on one training sample. We removed the morphelogical ambiguities
by choosing the sequence E of higher probability.

27.3 A Markov model with hidden states and observations

The inadequacy of the previous model to remove certain morphelogical ambiguities has led us
to believe that some unkown hidden states govern the distribution of the morphelogical features.
Instead of passing from one morphological feature to another, we focused only on the surface of
one random sample, i.e. an observation was a morphological feature. As pointed out in [ROU8E],
this latter entity cannot be extracted without a context effect in a sample. In order to consider
this context effect, we have chosen criteria like the nature of the feature, its successor feature,
its position in a sentence, the position of the sentence in the text. An observation o; is then a
known hidden vector whose components are values of the criteria presented here. Of course, one
can explore other criteria.

Déhinition 1 A hidden Markov model (HMM) is a Markov chain whose states cannot be observed
directly but only through a sequence of observation vectors.
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A HMM is represented by the state transition probability P, the initial state probability vector
I and a T' x K matrix V (X is the number of states) ; the elements of V are the conditional
densities v;(o;) = density of observation o, given e, = i. Our aim is the determination of the
optimal model estimate V* = (II*, P*, V*) given a certain number of samples : this is the
training problem.

Theoreme 1 The probability of a sample § = {01, 04,...,0r} given a model V can be written
@ =T
Prob(S/V) = Z [[211"21(01] S H Pﬂ—-l .ct‘vtt(o*)
E =2
Proof : For a fixed state sequence E = (e, e,...,er), the probability of the observation
sequence S = {o1,02,... 07} is:

Prob(S/E,V) = v.,(01) X ve,(02) X ... X vez(0r)
The probability of a state sequence is :
Prob(EfV) =, X Poyey X Peyey X co0 X Pog_y en
Using the formula :
Prob(S, E/V) = Prob(S/E,V) x Prob(E/V)

and summing this joint probability over all possible states sequences E, one demontrates the
theorem.

The interpretation of the previous equation is : initially at time ¢ = 1, the system is in state
e with probability II; and we observe o; with probability v, (o;). The system then makes a
transition to state e, with probability F., ., and we observe o, with probability v.,(o2). This
process continues until the last transition from state er_, to state ez with probability Pe,._, e,
and then we observe or with probability v..(or).

In order to determine one of the estimate of the model V = (II, P, V), one can use the
maximum likehood criterionn (or a max entropy) for a certain family §; where i € {1,2,..., L}
of training samples. Some methods of choosing representative samples of fixed length are
presented in [BOU92]. The problem is expressed mathematically as :

=L . =T .
maxy, f(S1,52;.-.,50/V) = max..-{ﬂ[);,l. X 0y (01) X [ Per_y erven(0?)]}

There is no known method to solve this problem analytically, that is the reason why we
use iterative procedures. We start by determining first the optimal path for each sample. An
optimal path E* is the one which is associated to the higher probability of the sample. Using
the well-known Viterbi algorithm, one can determine this optimal path. The different steps for
finding the single best state sequence in the Viterbi algorithm are :

step 1 : initialization
81(1) = M;v4(01) (l<i<K)
$i(i) =0
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step 2 : recursion foi'~2.>t>Taﬁd1 <jxXK:
b:(3) = max, <icx [6:-1(3) P 5lvi(o:)
Yi(J) = arg max, <;cx [8;-1(3) Pij)
step 3 : termination
P* = max, ¢;<k[87(i)]
er = Arg max; <<k [6r(i)]

state sequence backtracking fort =7 -1,7-2,...,1:
er = Prr1€iy,

P* is the state-optimized likelihood function and E* = {e},e},..., €%} is the optimal state
sequence. Instead of tracking all possible paths, one successively tracks only the optimal paths
E? of all samples. Thus, this can be written as :

t=T
9(911021 -3 0T E’!v) = maxE{Hfl X vﬂ(ol) x H Pe:_l m‘"m(of)}
t=2
This computation has to be done for all the samples. Among all the v; (: € {1,2,...,L})
associated to optimal paths, we decide to choose as best model estimate the one which maximizes
the probability associated to a sample. It can be written as :

V* = arg{max,g(o},03,...,0%; E*, Vi)
ie{y,2,...,L}

27.4 The different steps of the method

We present an interactive method which enables us to obtain an estimator of the model V. This
method is suitable for direct computation.

First step : one has to cluster the sample with respect to the chosen criteria. two possibilities
are offered : a classification or a segmentation. In this latter procedure, the user may
structure the states ; operating in this way, the states appear like unknown hidden states.
However, in a classification the system structures its own states according to a sunitable
norm. Thus, the states appear like unkown hidden ones. The clusters formed by one of the
two procedures represent the first states of the model, they form the first training path.

Second step : one estimate the transition probabilities using the following equations and the
probability of each training vector for each state v;(o;). This is the first model Vi, Let
L,i€{,2,...,K }andt € {1,2,...,T}.

o Let Nb{oy,1) be the number of times the observation o; belongs to the state ¢ and
Nbp the number of training paths, then :

i, — Ho1)
Nbp
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o Let Nb(o;_1,%; 04, 7) be the number of times the observation o,_; belongs to the state
i and the observation o, belongs to the state 7 , then :

5 Nb(o0—1,1; 0, )
P;(t)= ——————
.J( ) Nb(q_l : ‘)
® The previous estimation formula can be written as :
a N,' it N; ;
By = Nesl)__ Nis(t)
Ni(t —1)  Ny(t)
where N; ;(t) is the number of transitions from state 4 at time ¢ — 1 to state j at time
t and N;(t — 1) the number of times the state i is visited at time ¢ — 1.
o Let Nbez(oy,1) be the expected number of times of being in state 2 and observing
o, and Nbez (i) the expected number of times of being in state 7, then :
Nbez(oy,1)
Nbez(i)

{’i(oz) =

Third step : one computes f{0y,02,...,or; V1) and determines the next training path, or clus-
tering, necessary toincrease f(oy, 0z, ..., or; V1 ). We apply the second step to this training
path. The procedure is repeated until we reach the maximum value of the previous func-
tion. At this optimal value, we have E} and v; of the first sample. This step uses Viterbi
algorithm.

This algorithm is applied to a family of samples of the same text, so we obtain a family of
E?! and V;. As mentioned previously, one decides reasonably to choose the model V* whose
probablitiy associated to a sample is maximum. This last model makes the sample the most
representative, i.e. we have a good observation in some sense. This optimal model estimate is
considered as a rype of the text processed.

27.5 Test for first-order stationarity

As outlined by Anderson ang Goodman [AG57] the following test can be used to determine
whether the Markov chain is first-order stationary, or not. Thus, we have to test the null hypothesis
(H):

P",J"(t) = Pi.ﬁ (t = {11 2,. tT}
The likehood ratio with respect to the null and alternate hypothesis is :

=T i=K i=K P, Nis(t)
A=

0 i
We now determine the confidence region of the test. In fact, the expression —2 log A is distributed
as a Chi-square distribution with (T — 1) x K x (K — 1) degrees of freedom when the null
hypothesis is true. As the distribution of the statistic § = —2log A is ¥z, one can compute a 8
point (8 = 95,99.95 %, etc.) as the threshold Sg. The test is formulated as :
If § < Sp, the null hypothesis is accepted, i.e. the Markov chain is first-order stationary.
Otherwise, the null hypothesis is rejected at 100% — 3 level of signifiance, i.e. the chain is not
a first order stationary and one decides in favour of the nonstationary model.
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27.6 How to sotve the morphologi‘cal ambiguities

This is the most important phase of our application. Let’s consider an example of nine possible
paths encountered in a test. Among these paths, the system has to choose the most likely
according to the probability measure (see the third figure). Our decision of choosing the most
likely path comes from the optimal model V* obtained in the training phase. We show in this
example how to remove the morphological ambiguities.

If the optimal state sequence obtained in the training phase is the one which corresponds to
§ the figure :
1 2 3 4
| 0 —_— Og, 0g — | 02,303,007 | =]

K=4 : the optimal state sequence is 1,3,3,4,2,2,3

| : The nature of the feature f;

| It’s successor feature

| 1t’s predecessor feature

The position of the feature in a sentence

The position of the sentence in the text

the one for example can choose between the two following paths of the figure :
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(f3,83) (fa, 36)

2N 7N

(fir8:) ——=(far82) ——(f5,8%) ——=(fu, 84) ——{fs, 38) — (F2, 84) ——{Fr,57)

ey ™~

(£555) (#¢>5"6)

Path1l 81 83 83 84 83 8g 37
Pﬂ.thg 81 89 3'3 83 85 83 87

One compute the probabilities of these two realizations of the observations o; (i = 1,2,...,7)
using the formula :

=7
Prob{oy,03,...,07/V"}) =11, v,,(01) % H P, ecVei(02)
=2

The first figure shows that each s; belongs to a state e; and, using the optimal model V* =
(1, P, V) one can compute the probability of a path. Our decision to remove the morphological
ambiguities is to choose the path with the highest probability.

27.7 Conclusion

We have presented a new approach for solving the morphological ambiguities using a hidden
Markov model. This method may also be applied to other analysis levels as syntax. The main
advantage of the method is the possibility to assign many different classes of criteria (fuzzy or
completely known) to the training vectors and investigating many samples. Furthermore, we can
define a “distance" between any sample and a family of type of texts called models. One can
choose the model which gives the higher probability of this sample and conclude that the sample
belongs to the specific type of texts. We can also develop a proximity measure between two
models V! and V; through representative samples. However, some precautions must be taken
in the choice of the distance used between the training vectors in the cluster process. In fact,
the value of the probability associated to a sample may depend on this norm and, therefore, the
choice of the best model estimated can be affected.

So far, we supposed that the criteria described the observations and the states are completely
known (hard observation). Very often, when we want to make deep investigations, fuzziness or
uncertainty due to some criteria or states are encountered, what should be done in this case? How
can we cluster the observations according to some uncertainty measure? What is the optimal
path and the best estimate model according to the uncertainty meausure? We are working in
order to propose solutions to those questions in the case of a probabilistic [BOU91,BOU] and
fuzzy logic.
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