Chapter 8 (Part 1): Graphs

- Introduction to Graphs (8.1)
- Graph Terminology (8.2)

History

- Basic ideas were introduced in the eighteenth century by Leonard Euler (Swiss mathematician)
- Euler was interested in solving the Königsberg bridge problem (Town of Königsberg is in Kaliningrad, Republic of Russia)
-Graphs have several applications in many areas:
- Study of the structure of the World Wide Web
- Shortest path between 2 cities in a transportation network
- Molecular chemistry

Introduction to Graphs (8.1)

- There are 5 main categories of graphs:
- Simple graph
- Multigraph
- Pseudograph
- Directed graph
- Directed multigraph

Introduction to Graphs (8.1) (cont.)

- Definition 1

A simple graph $G=(V, E)$ consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.

- Example: Telephone lines connecting computers in different cities.

Introduction to Graphs (8.1) (cont.)

- Definition 2:

A multigraph $G=(V, E)$ consists of a set E of edges, and a function f from E to $\{\{u, v\} \mid u, v \in V$, $u \neq v\}$. The edges e_{1} and e_{2} are called multiple or parallel edges if $f\left(\mathrm{e}_{1}\right)=f\left(\mathrm{e}_{2}\right)$.

- Example: Multiple telephone lines connecting computers in different cities.

Introduction to Graphs (8.1) (cont.)

- Definition 3:

A pseudograph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a set V of vertices, a set E of edges, and a function f from E to $\{\{u, v\} \mid u, v \in V\}$. An edge is a loop if $f(e)=\{u, u\}$ $=\{u\}$ for some $u \in V$.

Introduction to Graphs (8.1) (cont.)

- Definition 4:

A directed graph (V,E) consists of a set of vertices V and a set of edges E that are ordered pairs of elements of V .

Introduction to Graphs (8.1) (cont.)

- Definition 5:

A directed multigraph $G=(V, E)$ consists of a set V of vertices, a set E of edges, and a function f from E to $\{\{u, v\} \mid u, v \in V\}$. The edges e_{1} and e_{2} are multiple edges if $f\left(\mathrm{e}_{1}\right)=f\left(\mathrm{e}_{2}\right)$.

Introduction to Graphs (8.1) (cont.)

Introduction to Graphs (8.1) (cont.)

- Modeling graphs
- Example: Competition between species in an ecological system can be modeled using a niche overlap graph.

An undirected edge connect two vertices if the two species represented by these vertices compete for food.

Introduction to Graphs (8.1) (cont.)

- Example: Influence of one person in society
- A directed graph called an influence graph is used to model this behavior
- There is a directed edge from vertex a to vertex b if the person represented by a vertex a influences the person represented by vertex b.

Introduction to Graphs (8.1) (cont.)

An influence graph

Introduction to Graphs (8.1) (cont.)

- Example:

The World Wide Web can be modeled as a directed graph where each web page is represented by a vertex and where an edge connects 2 web pages if there is a link between the 2 pages

Graph Terminology (8.2)

-Basic Terminology

- Goal: Introduce graph terminology in order to further classify graphs
- Definition 1 :

Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if $\{u, v\}$ is an edge of G. If $e=$ $\{u, v\}$, the edge e is called incident with the vertices u and v . The edge e is also said to connect u and v . The vertices u and v are called endpoints of the edge $\{u, v\}$.

Graph Terminology (8.2) (cont.)

- Definition 2:

The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).

- Example: What are the degrees of the vertices in the graphs G and H ?

G

H

Solution: $\quad \operatorname{In} G\left\{\begin{array}{l}\operatorname{deg}(a)=2 \\ \operatorname{deg}(b)=\operatorname{deg}(c)=\operatorname{deg}(f)=4 \\ \operatorname{deg}(d)=1 \\ \operatorname{deg}(e)=3 \\ \operatorname{deg}(g)=0\end{array}\right.$
In $H\left\{\begin{array}{l}\operatorname{deg}(a)=4 \\ \operatorname{deg}(b)=\operatorname{deg}(e)=6 \\ \operatorname{deg}(c)=1 \\ \operatorname{deg}(d)=5\end{array}\right.$

Graph Terminology (8.2) (cont.)

- Theorem 1:

The handshaking theorem
Let $G=(V, E)$ be an undirected graph with e edges. Then

$$
2 e=\sum_{v \in V} \operatorname{deg}(v) .
$$

(Note that this applies even if multiple edges \& loops are present.)

Graph Terminology (8.2) (cont.)

- Example: How many edges are there in a graph with ten vertices each of degree 6 ?

Solution: Since the sum of the degrees of the vertices is $6 * 10=60 \Rightarrow 2 e=60$. Therefore, $e=30$

Graph Terminology (8.2) (cont.)

- Theorem 2:

An undirected graph has an even number of vertices of odd degree.

Proof: Let V_{1} and V_{2} be the set of vertices of even degree and the set of vertices of odd degree, respectively, in an undirected graph $G=(V, E)$. Then

$$
2 e=\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V_{1}} \operatorname{deg}(v)+\sum_{v \in V_{2}} \operatorname{deg}(v) .
$$

Since $\operatorname{deg}(v)$ is even for $v \in V_{1}$, the first term in the right-hand side of the last equality is even. Furthermore, the sum of the two terms on the right-hand side of the last equality is even, since this sum is 2 e . Hence, the second term in the sum is also even. Since all the terms in this sum are odd, there must be an even number of such terms. Thus, there are an even number of vertices of odd degree.

Graph Terminology (8.2) (cont.)

- Definition 3:

When (u, v) is an edge of the graph G with directed edges, u is said to be adjacent to v and v is said to be adjacent from u. The vertex u is called the initial vertex of (u, v), and v is called the terminal or end vertex of (u, v). The initial vertex and terminal vertex of a loop are the same.

Graph Terminology (8.2) (cont.)

- Definition 4:

In a graph with directed edges the in-degree of a vertex v , denoted $\mathrm{deg}^{-}(\mathrm{v})$, is the number of edges with v as their terminal vertex. The out-degree of v , denoted by $\operatorname{deg}^{+}(\mathrm{v})$, is the number of edges with v as their initial vertex.
(Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex)

Graph Terminology (8.2) (cont.)

- Example: Find the in-degree and the out-degree of each vertex in the graph G

Solution: The in-degree of G are: $\operatorname{deg}^{-}(\mathrm{a})=2, \operatorname{deg}^{-}(\mathrm{b})=2$, $\operatorname{deg}^{-}(\mathrm{c})=3, \operatorname{deg}^{-}(\mathrm{d})=2, \operatorname{deg}^{-}(\mathrm{e})=3$, and $\operatorname{deg}^{-}(\mathrm{f})=0$.
The in-degree of G are: $\operatorname{deg}^{+}(a)=4, \operatorname{deg}^{+}(b)=1, \operatorname{deg}^{+}(c)=$ $2, \operatorname{deg}^{+}(\mathrm{d})=2, \operatorname{deg}^{+}(\mathrm{e})=3$, and $\operatorname{deg}^{+}(\mathrm{f})=0$

Graph Terminology (8.2) (cont.)

- Theorem 3:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with directed edges.
Then

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E| .
$$

