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Ch.1 (Part 3): 
The Foundations: Logic and Proof, Sets, and 
Functions

Set Operations (Section 1.7)

Sequences, Summation, Cardinality of Infinites 
Sets (Section 1.7)

Set Operations (1.7) (cont.)

Propositional calculus and set theory are both 
instances of an algebraic system called a

Boolean Algebra.

The operators in set theory are defined in terms of 
the corresponding operator in propositional
calculus

As always there must be a universe U. All sets are 
assumed to be subsets of U
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Set Operations (1.7) (cont.)

Definition: 

Two sets A and B are equal, denoted A = B, iff
∀x[x ∈ A ↔ x ∈ B].

Note: By a previous logical equivalence we have

A = B iff ∀x [(x ∈ A x ∈ B) ∧ (x ∈ B x ∈ A)]
or

A = B iff A ⊆ B and B ⊆ A

Set Operations (1.7) (cont.)
Definitions:

The union of A and B, denoted A U B, is the set {x | x ∈ A ∨ x ∈ B}

The intersection of A and B, denoted A ∩ B, is the set 
{x | x ∈ A ∧ x ∈ B}

Note: If the intersection is void, A and B are said to be disjoint.

The complement of A, denoted      , is the set {x | ¬(x ∈ A)}
Note: Alternative notation is Ac, and {x|x ∉ A}.

The difference of A and B, or the complement of B relative to A, denoted 
A - B, is the set A ∩

Note: The (absolute) complement of A is U - A.

The symmetric difference of A and B, denoted A⊕B, is the set 
(A - B)U(B - A)

A

B
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Set Operations (1.7) (cont.)

Examples:
U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A= {1, 2, 3, 4, 5}, 
B = {4, 5, 6, 7, 8}. Then

A∪B = {1, 2, 3, 4, 5, 6, 7, 8}
A ∩ B = {4, 5}

= {0, 6, 7, 8, 9, 10}
= {0, 1, 2, 3, 9, 10}

A - B = {1, 2, 3}
B - A = {6, 7, 8}
A⊕B = {1, 2, 3, 6, 7, 8}

A
B

Set Operations (1.7) (cont.)

Venn Diagrams

A useful geometric visualization tool (for 3 or less sets)
The Universe U is the rectangular box
Each set is represented by a circle and its interior
All possible combinations of the sets must be represented

Shade the appropriate region to represent the given set operation.

U U
A

A
B

C

B

For 2 sets For 3 sets
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Set Operations (1.7) (cont.)

Set Identities

Set identities correspond to the logical equivalences.

Example:
The complement of the union is the intersection of the
complements:

= ∩
Proof: To show:

∀x [x ∈ ↔ x ∈ ∩ ]
To show two sets are equal we show for all x that x is a member of 

one set if and only if it is a member of the other.

A B

A B

BA∪

BA∪

Set Operations (1.7) (cont.)

We now apply an important rule of inference (defined 
later) called

Universal Instantiation
In a proof we can eliminate the universal quantifier 
which binds a variable if we do not assume anything 
about the variable other than it is an arbitrary member of 
the Universe. We can then treat the resulting predicate 
as a proposition.
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We say
'Let x be arbitrary.'

Then we can treat the predicates as propositions:

Set Operations (1.7) (cont.)

Hence
x ∈ ↔ x ∈ ∩

is a tautology.

Since

• x was arbitrary
• we have used only logically equivalent assertions and 

definitions

BA∪ A B
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Set Operations (1.7) (cont.)

we can apply another rule of inference called

Universal Generalization
We can apply a universal quantifier to bind a variable if we 
have shown the predicate to be true for all values of the 
variable in the Universe. 

and claim the assertion is true for all x, i.e.,

∀x [x ∈ ↔ x ∈ ∩ ]

Q. E. D. (Latin phrase “Quod Erat Demonstrandum”)

BA∪ A B

Set Operations (1.7) (cont.)

Note: As an alternative which might be easier in some cases, use the 
identity

A = B ⇔ [A ⊆ B and B ⊆ A]

Example:
Show A ∩ (B - A) = ∅

The void set is a subset of every set. Hence,
A ∩ (B - A) ⊇ ∅

Therefore, it suffices to show

A ∩ (B - A) ⊆ ∅ or          ∀x [x∈A ∩ (B - A) x ∈ ∅]

So as before we say 'let x be arbitrary’.
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Set Operations (1.7) (cont.)

Example (cont.)
Show x∈A ∩ (B - A) x ∈ ∅ is a tautology.
But the consequent is always false.
Therefore, the antecedent better always be false also.
Apply the definitions:

Set Operations (1.7) (cont.)

Example (cont.)

Hence, because P ∧ ¬P is always false, the implication 
is a tautology.

The result follows by Universal Generalization.

Q. E. D.
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Set Operations (1.7) (cont.)

Union and Intersection of Indexed Collections

Let A1,A2 ,..., An be an indexed collection of sets.
Union and intersection are associative (because 'and' and 
'or' are) we have:

n21i

n

1i

n21i

n

1i

A...AAA

and                 

A...AAA

∩∩∩=∩

∪∪∪=∪

=

=

Set Operations (1.7) (cont.)

Examples

Let 

),n[A

),1[A
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Sequences, Summation, Cardinality 
of Infinites Sets (1.7)

Definition: A sequence is a function from a subset of the 
natural numbers (usually of the form {0, 1, 2, . . . } to a set 
S.
Note: the sets

{0, 1, 2, 3, . . . , k} and {1, 2, 3, 4, . . . , k}

are called initial segments of N.

Notation: if f is a function from {0, 1, 2, . . .} to S we 
usually denote f(i) by ai and we write

where k is the upper limit (usually ∞).

{ } { } { }k
0i

k
0ii210 aa,...a,a,a == =

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Examples:

Using zero-origin indexing, if f(i) = 1/(i + 1). then the
Sequence

f = {1, 1/'2,1/3,1/4, . . . } = {a0, a1, a2, a3, . . }

Using one-origin indexing the sequence f becomes

{1/2, 1/3, . . .} = {a1, a2, a3, . . .}
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Summation Notation

Given a sequence           we can add together a subset 
of the sequence by using the summation and function 
notation

or more generally

∑
∈Sj

ja

∑
=

+ =+++
n

mj
)j(g)n(g)1m(g)m(g aa...aa

{ }k
0ia

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Examples:

∑

∑

∑

∑

∈

=
+

∞

+++==

=+++

=+++++

=++++

Sj
10752j

n

mj
j2)n(2)1m(2m2

1

n

0
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aaaaa then {2,5,7,10}S  if
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i
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4
1

3
1

2
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=

+=
n

mj
n1mmj a...aaa
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Definition:

A geometric progression is a sequence of the form
a, ar, ar2, ar3, ar4, . . . .

Your book has a proof that

(you can figure out what it is if r = 1).

You should also be able to determine the sum
• if the index starts at k vs. 0
• if the index ends at something other than n 

(e.g., n-1, n+1, etc.).

1r  if
1r

1rr
n

0i

1n
i ≠

−
−

=∑
=

+

Sequences, Summation, Cardinality of 
Infinites Sets (1.7) (cont.)

Cardinality

Definition:

The cardinality of a set A is equal to the cardinality of a 
set B, denoted 

| A | = | B |, 

if there exists a bijection from A to B.
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Definition:

If a set has the same cardinality as a subset of the 
natural numbers N, then the set is called countable.

If |A| = |N|, the set A is countably infinite.

The (transfinite) cardinal number of the set N is
aleph null = ℵ0.

If a set is not countable we say it is uncountable.

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Examples:

The following sets are uncountable (we show later)

The real numbers in [0, 1]
P(N), the power set of N

Note: With infinite sets proper subsets can have the 
same cardinality. This cannot happen with finite sets.

Countability carries with it the implication that there is a 
listing of the elements of the set.
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Definition: | A | ≤ | B | if there is an injection from A to B.

Note: as you would hope,

Theorem:
If | A | ≤ | B | and | B | ≤ | A | then | A | = | B |.

This implies
if there is an injection from A to B
if there is an injection from B to A

then
there must be a bijection from A to B

This is difficult to prove but is an example of demonstrating existence 
without construction.
It is often easier to build the injections and then conclude the bijection
exists.

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Example:

Theorem: If A is a subset of B then | A | ≤ | B |.
Proof: the function f(x) = x is an injection from A to B.

Example: {0, 2, 5}| ≤ ℵ0

The injection f: {0, 2, 5} N defined by f(x) = x is 
shown below:

0     1     2     3     4     5     6 0     1     2     3     4     5     6 ……

0     2     50     2     5
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Some Countably Infinite Sets

The set of even integers E ( 0 is considered even) is
countably infinite. Note that E is a proper subset of N,

Proof: Let f(x) = 2x. Then f is a bijection from N to E

Z+, the set of positive integers is countably infinite.

0     1     2     3     4     5       6 0     1     2     3     4     5       6 ……

0     2     4     6     8     10     12 0     2     4     6     8     10     12 ……

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

The set of positive rational numbers Q+ is countably
infinite.

Proof: Z+ is a subset of Q+ so |Z+| = ℵ0 ≤ |Q+|.
Now we have to show that |Q+| ≤ ℵ0.

To do this we show that the positive rational numbers 
with repetitions, QR, is countably infinite.

Then, since Q+ is a subset of QR, it follows that 
|Q+| ≤ ℵ0 and hence |Q+| = ℵ0.
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

The position on the path (listing) indicates the image of 
the bijective function f from N to QR:

f(0) = 1/1, f(1) = 1/2, f(2) = 2/1, f(3) = 3/1, and so 
forth.

Every rational number appears on the list at least once, 
some many times (repetitions).

Hence, |N| = |QR| = ℵ0.                              Q. E. D

The set of all rational numbers Q, positive and negative, is
countably infinite.



CSE 504 Discrete Structures & Foudations 
of Computer Science

Dr. Djamel Bouchaffra

Ch1 (Part 3) 16

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

The set of (finite length) strings S over a finite alphabet A is
countably infinite.

To show this we assume that
A is nonvoid
There is an “alphabetical” ordering of the symbols in A

Proof: List the strings in lexicographic order:
all the strings of zero length,
then all the strings of length 1 in alphabetical order,
then all the strings of length 2 in alphabetical order,

etc.

This implies a bijection from N to the list of strings and hence it is a
countably infinite set.

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

For example: 
Let A = {a, b, c}.

Then the lexicographic ordering of A is

{λ , a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab,
aac, aba, ....} = {f(0), f(1), f(2), f(3), f(4), . . . .}
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

The set of all C programs is countable.

Proof: Let S be the set of legitimate characters which can appear in 
a C program.

A C compiler will determine if an input program is a syntactically correct 
C program (the program doesn't have to do anything useful).
Use the lexicographic ordering of S and feed the strings into the 
compiler.

– If the compiler says YES, this is a syntactically correct C program, we add 
the program to the list.

– Else we move on to the next string.

In this way we construct a list or an implied bijection from N to the 
set of C programs.

Hence, the set of C programs is countable.                      Q. E. D.

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Cantor Diagonalization

An important technique used to construct an object which is not a 
member of a countable set of objects with (possibly) infinite 
descriptions

Theorem: The set of real numbers between 0 and 1 is uncountable.
Proof: We assume that it is countable and derive a contradiction.

If it is countable we can list them (i.e., there is a bijection from a 
subset of N to the set).

We show that no matter what list you produce we can construct a 
real number between 0 and 1 which is not in the list.

Hence, there cannot exist a list and therefore the set is not 
countable
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

It's actually much bigger than countable. It is said to have 
the cardinality of the continuum, c.

Represent each real number in the list using its decimal 
expansion.

e.g., 1/3 = .3333333........
1/2 = .5000000........

= .4999999........

If there is more than one expansion for a number, it 
doesn't matter as long as our construction takes this into 
account.

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

THE LIST....
r1 = .d11d12d13d14d15d16. . . . .
r2 = .d21d22d23d24d25d26 . . . .
r3 = .d31d32d33d34d35d36 . . . .
...

Now construct the number x = .x1x2x3x4x5x6x7. . . .

xi = 3 if dii ≠ 3
xi = 4 if dii = 3

(Note: choosing 0 and 9 is not a good idea because of the non uniqueness 
of decimal expansions.)

Then x is not equal to any number in the list.

Hence, no such list can exist and hence the interval (0,1) is uncountable.       
Q. E. D.
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Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

An extra goody:

Definition: a number x between 0 and 1 is computable
if there is a C program which when given the input i, will 
produce the ith digit in the decimal expansion of x.

Example:

The number 1/3 is computable.

The C program which always outputs the digit 3,
regardless if the input, computes the number.

Sequences, Summation, Cardinality of 
Infinites Sets (1.7)

Theorem: There is exists a number x between 0 and 1 
which is not computable.

There does not exist a C program (or a program in any 
other language) which will compute it!

Why? Because there are more numbers between 0 and 1 
than there are C programs to compute them.

(in fact there are c such numbers!)

Our second example of the nonexistence of programs to 
compute things!
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