
© 2004 Goodrich, Tamassia

Analysis of Algorithms

AlgorithmInput Output

An algorithm is a step- by- step procedure for
solving a problem in a finite amount of time.

Analysis of Algorithms 2© 2004 Goodrich, Tamassia

Running Time (§3.1)
Most algorithms transform
input objects into output
objects.
The running time of an
algorithm typically grows
with the input size.
Average case time is often
difficult to determine.
We focus on the worst case
running time.

Easier to analyze
Crucial to applications such as
games, finance and robotics

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000

Input Size

best case
average case
worst case

Analysis of Algorithms 3© 2004 Goodrich, Tamassia

Experimental Studies

Write a program
implementing the
algorithm
Run the program with
inputs of varying size and
composition
Use a method like
System.currentTimeMillis() to
get an accurate measure
of the actual running time
Plot the results 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

Ti
m

e
(m

s)

Analysis of Algorithms 4© 2004 Goodrich, Tamassia

Limitations of Experiments

It is necessary to implement the
algorithm, which may be difficult
Results may not be indicative of the
running time on other inputs not included
in the experiment.
In order to compare two algorithms, the
same hardware and software
environments must be used

Analysis of Algorithms 5© 2004 Goodrich, Tamassia

Theoretical Analysis

Uses a high-level description of the
algorithm instead of an implementation
Characterizes running time as a
function of the input size, n.
Takes into account all possible inputs
Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Analysis of Algorithms 6© 2004 Goodrich, Tamassia

Pseudocode (§3.2)
High- level description
of an algorithm
More structured than
English prose
Less detailed than a
program
Preferred notation for
describing algorithms
Hides program design
issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max
element of an array

Analysis of Algorithms 7© 2004 Goodrich, Tamassia

Pseudocode Details

Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
Indentation replaces braces

Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
←Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other

mathematical
formatting allowed

Analysis of Algorithms 8© 2004 Goodrich, Tamassia

The Random Access Machine
(RAM) Model

A CPU

An potentially unbounded
bank of memory cells,
each of which can hold an
arbitrary number or
character

0
1
2

Memory cells are numbered and accessing
any cell in memory takes unit time.

Analysis of Algorithms 9© 2004 Goodrich, Tamassia

Seven Important Functions (§3.3)
Seven functions that
often appear in
algorithm analysis:

Constant ≈ 1
Logarithmic ≈ log n
Linear ≈ n
N-Log-N ≈ n log n
Quadratic ≈ n2

Cubic ≈ n3

Exponential ≈ 2n

In a log- log chart, the
slope of the line
corresponds to the
growth rate of the
function

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

Analysis of Algorithms 10© 2004 Goodrich, Tamassia

Primitive Operations
Basic computations
performed by an algorithm
Identifiable in pseudocode
Largely independent from the
programming language
Exact definition not important
(we will see why later)
Assumed to take a constant
amount of time in the RAM
model

Examples:
Evaluating an
expression
Assigning a value
to a variable
Indexing into an
array
Calling a method
Returning from a
method

Analysis of Algorithms 11© 2004 Goodrich, Tamassia

Counting Primitive
Operations (§3.4)

By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 8n − 2

Analysis of Algorithms 12© 2004 Goodrich, Tamassia

Estimating Running Time
Algorithm arrayMax executes 8n − 2 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a (8n − 2) ≤ T(n) ≤ b(8n − 2)

Hence, the running time T(n) is bounded by two
linear functions

Analysis of Algorithms 13© 2004 Goodrich, Tamassia

Growth Rate of Running Time

Changing the hardware/ software
environment

Affects T(n) by a constant factor, but
Does not alter the growth rate of T(n)

The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

Analysis of Algorithms 14© 2004 Goodrich, Tamassia

Constant Factors

The growth rate is
not affected by

constant factors or
lower-order terms

Examples
102n + 105 is a linear
function
105n2 + 108n is a
quadratic function

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic

Quadratic

Linear

Linear

Analysis of Algorithms 15© 2004 Goodrich, Tamassia

Big-Oh Notation (§3.4)
Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

Example: 2n + 10 is O(n)
2n + 10 ≤ cn
(c − 2) n ≥ 10
n ≥ 10/(c − 2)
Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Analysis of Algorithms 16© 2004 Goodrich, Tamassia

Big-Oh Example

Example: the function
n2 is not O(n)

n2 ≤ cn
n ≤ c
The above inequality
cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

Analysis of Algorithms 17© 2004 Goodrich, Tamassia

More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2
Analysis of Algorithms 18© 2004 Goodrich, Tamassia

Big-Oh and Growth Rate
The big- Oh notation gives an upper bound on the
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)
We can use the big- Oh notation to rank functions
according to their growth rate

YesYesSame growth
YesNof(n) grows more
NoYesg(n) grows more

g(n) is O(f(n))f(n) is O(g(n))

Analysis of Algorithms 19© 2004 Goodrich, Tamassia

Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower- order terms
2. Drop constant factors

Use the smallest possible class of functions
Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Analysis of Algorithms 20© 2004 Goodrich, Tamassia

Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines
the running time in big- Oh notation
To perform the asymptotic analysis

We find the worst-case number of primitive operations
executed as a function of the input size
We express this function with big-Oh notation

Example:
We determine that algorithm arrayMax executes at most
8n − 2 primitive operations
We say that algorithm arrayMax “runs in O(n) time”

Since constant factors and lower- order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

Analysis of Algorithms 21© 2004 Goodrich, Tamassia

Computing Prefix Averages
We further illustrate
asymptotic analysis with
two algorithms for prefix
averages
The i- th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of
prefix averages of another
array X has applications to
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

Analysis of Algorithms 22© 2004 Goodrich, Tamassia

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1

Analysis of Algorithms 23© 2004 Goodrich, Tamassia

Arithmetic Progression

The running time of
prefixAverages1 is
O(1 + 2 + …+ n)
The sum of the first n
integers is n(n + 1) / 2

There is a simple visual
proof of this fact

Thus, algorithm
prefixAverages1 runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Analysis of Algorithms 24© 2004 Goodrich, Tamassia

Prefix Averages (Linear)
The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1
Algorithm prefixAverages2 runs in O(n) time

Analysis of Algorithms 25© 2004 Goodrich, Tamassia

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents

Proof techniques
Basic probability

Math you need to Review

Analysis of Algorithms 26© 2004 Goodrich, Tamassia

Relatives of Big-Oh
big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0
and an integer constant n0 ≥ 1 such that
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’
> 0 and an integer constant n0 ≥ 1 such that
c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0

Analysis of Algorithms 27© 2004 Goodrich, Tamassia

Intuition for Asymptotic
Notation

Big-Oh
f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega
f(n) is Ω(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta
f(n) is Θ(g(n)) if f(n) is asymptotically
equal to g(n)

Analysis of Algorithms 28© 2004 Goodrich, Tamassia

Example Uses of the
Relatives of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0 ≥ 1 such that f(n) < c•g(n) for n ≥ n0

Let c = 5 and n0 = 1

5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

5n2 is Ω(n2)

