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Analysis of Algorithms

AlgorithmInput Output

An algorithm is a step- by- step procedure for
solving a problem in a finite amount of time.

Analysis of Algorithms 2© 2004 Goodrich, Tamassia

Running Time (§3.1) 
Most algorithms transform 
input objects into output 
objects.
The running time of an 
algorithm typically grows 
with the input size.
Average case time is often 
difficult to determine.
We focus on the worst case 
running time.

Easier to analyze
Crucial to applications such as 
games, finance and robotics
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Experimental Studies

Write a program 
implementing the 
algorithm
Run the program with 
inputs of varying size and 
composition
Use a method like 
System.currentTimeMillis() to 
get an accurate measure 
of the actual running time
Plot the results 0
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Limitations of Experiments

It is necessary to implement the 
algorithm, which may be difficult
Results may not be indicative of the 
running time on other inputs not included 
in the experiment. 
In order to compare two algorithms, the 
same hardware and software 
environments must be used
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Theoretical Analysis

Uses a high-level description of the 
algorithm instead of an implementation
Characterizes running time as a 
function of the input size, n.
Takes into account all possible inputs
Allows us to evaluate the speed of an 
algorithm independent of the 
hardware/software environment
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Pseudocode (§3.2)
High- level description 
of an algorithm
More structured than 
English prose
Less detailed than a 
program
Preferred notation for 
describing algorithms
Hides program design 
issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max 
element of an array
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Pseudocode Details

Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
Indentation replaces braces 

Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
←Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other 

mathematical 
formatting allowed
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The Random Access Machine 
(RAM) Model

A CPU

An potentially unbounded 
bank of memory cells, 
each of which can hold an 
arbitrary number or 
character

0
1
2

Memory cells are numbered and accessing 
any cell in memory takes unit time.
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Seven Important Functions (§3.3)
Seven functions that 
often appear in 
algorithm analysis:

Constant ≈ 1
Logarithmic ≈ log n
Linear ≈ n
N-Log-N ≈ n log n
Quadratic ≈ n2

Cubic ≈ n3

Exponential ≈ 2n

In a log- log chart, the 
slope of the line 
corresponds to the 
growth rate of the 
function
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Primitive Operations
Basic computations 
performed by an algorithm
Identifiable in pseudocode
Largely independent from the 
programming language
Exact definition not important 
(we will see why later)
Assumed to take a constant 
amount of time in the RAM 
model

Examples:
Evaluating an 
expression
Assigning a value 
to a variable
Indexing into an 
array
Calling a method
Returning from a 
method
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Counting Primitive 
Operations (§3.4)

By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 8n − 2
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Estimating Running Time
Algorithm arrayMax executes 8n − 2 primitive 
operations in the worst case.  Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a (8n − 2) ≤ T(n) ≤ b(8n − 2)

Hence, the running time T(n) is bounded by two 
linear functions
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Growth Rate of Running Time

Changing the hardware/ software 
environment 

Affects T(n) by a constant factor, but
Does not alter the growth rate of T(n)

The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax
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Constant Factors

The growth rate is 
not affected by

constant factors or 
lower-order terms

Examples
102n + 105 is a linear 
function
105n2 + 108n is a 
quadratic function
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Big-Oh Notation (§3.4)
Given functions f(n) and 
g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0

Example: 2n + 10 is O(n)
2n + 10 ≤ cn
(c − 2) n ≥ 10
n ≥ 10/(c − 2)
Pick c = 3 and n0 = 10
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Big-Oh Example

Example: the function 
n2 is not O(n)

n2 ≤ cn
n ≤ c
The above inequality 
cannot be satisfied 
since c must be a 
constant 

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n



Analysis of Algorithms 17© 2004 Goodrich, Tamassia

More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2
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Big-Oh and Growth Rate
The big- Oh notation gives an upper bound on the 
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)
We can use the big- Oh notation to rank functions 
according to their growth rate

YesYesSame growth
YesNof(n) grows more
NoYesg(n) grows more

g(n) is O(f(n))f(n) is O(g(n))
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Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower- order terms
2. Drop constant factors

Use the smallest possible class of functions
Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines 
the running time in big- Oh notation
To perform the asymptotic analysis

We find the worst-case number of primitive operations 
executed as a function of the input size
We express this function with big-Oh notation

Example:
We determine that algorithm arrayMax executes at most 
8n − 2 primitive operations
We say that algorithm arrayMax “runs in O(n) time”

Since constant factors and lower- order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations
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Computing Prefix Averages
We further illustrate 
asymptotic analysis with 
two algorithms for prefix 
averages
The i- th prefix average of 
an array X is average of the 
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of 
prefix averages of another 
array X has applications to 
financial analysis
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Prefix Averages (Quadratic)
The following algorithm computes prefix averages in 
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1
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Arithmetic Progression

The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)
The sum of the first n
integers is n(n + 1) / 2

There is a simple visual 
proof of this fact

Thus, algorithm 
prefixAverages1 runs in 
O(n2) time 

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Analysis of Algorithms 24© 2004 Goodrich, Tamassia

Prefix Averages (Linear)
The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1
Algorithm prefixAverages2 runs in O(n) time 
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properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations
Logarithms and Exponents

Proof techniques
Basic probability

Math you need to Review
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Relatives of Big-Oh
big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0 
and an integer constant n0 ≥ 1 such that 
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’
> 0 and an integer constant n0 ≥ 1 such that 
c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0
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Intuition for Asymptotic 
Notation

Big-Oh
f(n) is O(g(n)) if f(n) is asymptotically 
less than or equal to g(n)

big-Omega
f(n) is Ω(g(n)) if f(n) is asymptotically 
greater than or equal to g(n)

big-Theta
f(n) is Θ(g(n)) if f(n) is asymptotically 
equal to g(n)
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Example Uses of the 
Relatives of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0 ≥ 1 such that f(n) < c•g(n) for n ≥ n0 

Let c = 5 and n0 = 1

5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

5n2 is Ω(n2)


