Merge Sort

[72|94_>2479]

[7|2_>27]

[9|4_>49]

(757] (252) [9-9) [(454]

© 2004 Goodrich, Tamassia Merge Sort

= Recur: solve the

subproblems associated

with §, and S,

= Conquer: combine the
solutions for §, and S, into a

solution for .S
@ The base case for the

recursion are subproblems of

sizeOor1l

© 2004 Goodrich, Tamassia

Divide-and-Conquer (§ 10.1.1)

@ Divide-and conquer is a
general algorithm design

@ Merge-sort is a sorting
algorithm based on the

paradigm: divide-and-conquer
= Divide: divide the input data paradigm
S in two disjoint subsets S, @ Like heap-sort
and S,

» It uses a comparator
= It has O(n log n) running
time
@ Unlike heap-sort
= It does not use an
auxiliary priority queue

» It accesses data in a
sequential manner
(suitable to sort data on a
disk)

Merge Sort 2

Merge- st on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S, and S,

of about n/2 elements
each

= Recur: recursively sort S,
and S,

= Conquer: merge S, and
S, into a unique sorted
sequence

© 2004 Goodrich, Tamassia Merge Sort

Merge-Sort (§ 10.1)

Algorithm mergeSort(S, C)

Input sequence .S with n
elements, comparator C

Output sequence S sorted
according to C

if S.size() > 1
(S, S,) < partition(S, n/2)
mergeSort(S,, C)
mergeSor(S,, C)
S « merge(S,, S,)

The conquer step of
merge-sort consists
of merging two
sorted sequences 4
and B into a sorted
sequence S
containing the union
of the elements of 4
and B

@ Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

© 2004 Goodrich, Tamassia

Merging Two Sorted Sequences

Algorithm merge(A, B)
Input sequences 4 and B with
n/2 elements each

Output sorted sequence of 4 U B

S < empty sequence
while —A.isEmpty() A —B.isEmpty()
if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))
else
S.insertLast(B.remove(B.first()))

while —A.isEmpty()
S.insertLast(A.remove(A.first()))

while —B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Merge Sort 4

Merge-Sort Tree Execution Example

An execution of merge srt is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores QPa rtition
+ unsorted sequence before the execution and its partition
« sorted sequence at the end of the execution [7 294|386 1]

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

(712527 [914 549

(757] [252) (959 [4-4]

© 2004 Goodrich, Tamassia Merge Sort 5 © 2004 Goodrich, Tamassia Merge Sort 6
Execution Example (cont.) Execution Example (cont.)
@®Recursive call, partition @®Recursive call, partition
(729413861) (729413861)

© 2004 Goodrich, Tamassia Merge Sort 7 © 2004 Goodrich, Tamassia Merge Sort 8

Execution Example (cont.)

#®Recursive call, base case

(7294138561)

(72194) [)
el] |)|))
¥
=7 () CJC) CJO COJ

Execution Example (cont.)

#®Recursive call, base case

(7294138561)

(72194

© 2004 Goodrich, Tamassia Merge Sort 10

Execution Example (cont.)

#®Merge

(72194

""""""

|
IS

———————————

© 2004 Goodrich, Tamassia Merge Sort

(729413861)

""""""

———————————

Execution Example (cont.)

#®Recursive call, ..., base case, merge

(729413861)

(72194)

(712527) (94549

VNN

757 [252] [959 [454

© 2004 Goodrich, Tamassia Merge Sort 12

Execution Example (cont.)
#®Merge

(7294138561)

(7219452474

~ N

7l2527 (94549)

757) [252] [959 [454

© 2004 Goodrich, Tamassia Merge Sort 13

Execution Example (cont.)

®Recursive call, ..., merge, merge

(7294138561)
(7219452479 (3861136 3]
-~ N
G R G (R

757 (252] (959 (459 (353 o9 (656 11

© 2004 Goodrich, Tamassia Merge Sort 14

Execution Example (cont.)

#®Merge
(729413861 >123467809]
Pl -~
(7219452474 (38611368
7l2527 (94549) 38 —>34 (6116

757 (252] (959 (4549 (353 o9 (656 (11

© 2004 Goodrich, Tamassia Merge Sort 15

Analysis of Merge-Sort

@ The height & of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

@ The overall amount or work done at the nodes of depth i is O(n)
= we partition and merge 2/ sequences of size n/2!
= we make 2! recursive calls

@ Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n ()
1 2 n2 () ()
i 2w D) @)
© 2004 Goodrich, Tamassia Merge Sort 16

Summary of Sorting Algorithms

Algorithm

Time

Notes

selection ot

o(n?)

slow
in-place
for small data sets (< 1K)

insertion ot

o(n?)

slow
in-place
for small data sets (< 1K)

heap sort

O(n log n)

fast
in-place
for large data sets (1K — 1M)

merge- ot

O(n log n)

@ fast
sequential data access
for huge data sets (> 1M)

© 2004 Goodrich, Tamassia

Merge Sort

17

Nonrecursive Merge-Sort

merge runs of

length 2, then

4, then 8, and
SO on

public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive
Object[] in = new Object[orig.length]; // make a new temporary array
System.arraycopy(orig,0,in,0,in.length); // copy the input
Object[] out = new Object[in.length]; // output array
Object[] temp; // temp array reference used for swapping
int n = in.length;
for (int i=1; i < n; i*=2) { // each iteration sorts all length 2i runs
for (int j=0; j < n; j+=2*i) // each iteration merges two length ipairs
merge(in,out,c,j,i); // merge from in to out two length iruns at j
temp = in; in = out; out = temp; // swap arrays for next iteration

// the "in" array contains the sorted array, so re py it
System.arraycopy(in,0,orig,0,in.length);

protected static void merge(Object[] in, Object[] out, Comparator ¢, int start,
int inc) { // merge in[start..start+ine fland in[start+inc..start+2*ine
int x = start; // index into run #1
int end1 = Math.min(start+inc, in.length); // boundary for run #1
int end2 = Math.min(start+2*inc, in.length); // boundary for run #2
int y = start+inc; // index into run #2 (could be beyond array boundary)

int z = start; // index into the out array
merge tWO runs while ((x < end1) && (y < end2))

in the in array
to the out array

© 2004 Goodrich, Tamassia

if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];
else out[z++] = in[y++];

if (x < end1) // first run didn't finish
System.arraycopy(in, x, out, z, end1- x);

else if (y < end2) // second run didn't finish
System.arraycopy(in, y, out, z, end2- y);

Merge Sort

18

